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Exercise 1 (Form some homomorphisms to quotients and compare their images)

a) Let G:=SmallGroup(60,10). Construct the homomorphism ϕ : G→ G/G′.

b) Let G = S5. Construct the homomorphism ϕ : G→ G/G′.

c) Let G = SL2(5). Construct the homomorphism ϕ : G→ G/G′.

d) Can you explain the kind of image group, and why the third homomorphism looks so
different.

Exercise 2 (A homomorphism given by a rule) Let G be the stabilizer in GL4(3) of
the subspace spanned by the first two basis vectors:

gap> sub:=IdentityMat(4,GF(3)){[1,2]};

[ [ Z(3)^0,0*Z(3),0*Z(3),0*Z(3) ], [ 0*Z(3),Z(3)^0,0*Z(3),0*Z(3) ] ]

gap> G:=Stabilizer(GL(4,3),sub,OnSubspacesByCanonicalBasis);

<matrix group of size 186624 with 7 generators>

Construct a homomorphism on GL2(3) given by the action on the factor space.

Exercise 3 (Create a presentation and transfer to another free group)
Construct S4 = 〈e := (1, 2, 3, 4), f := (1, 2)〉 as a finitely presented group on these two gen-
erators (named e and f).
Hint: Use IsomorphismFpGroupByGenerators to get a presentation, then make a new free
group with the generators named as you want and transfer the relators to the new group. Use
FreeGroupOfFpGroup and RelatorsOfFpGroup to translate relators to the free group with
the desired generator names.
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Exercise 4 (Stabilizer of a set of sets by changing permutation representation)
The Fano plane is a combinatorial configuration consisting of 7 points and 7 three-element
subsets of these points:

{{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}}

The automorphism group of this configuration is the subgroup of S7 that fixes these sets. To
find it:

a) Construct all 35 3-element sets out of 7 points and construct the homomorphism for the
action of S7 on these sets.

b) Represent the fano plane by a 7-of-35 set of points and calculate the stabilizer of this set
under the image of the action in a)

c) Take the pre-image of this stabilizer.

Exercise 5 (Automorphisms induced by normalizer in Sn)
Let G = 〈(1, 2), (3, 4)(5, 6), (3, 6)(4, 5), (7, 8), (3, 4)(9, 10), (3, 9)(4, 10)〉. What is the number
of automorphisms of G that are induced by NS10(G)?
Hint: Calculate the normalizer and use ConjugatorAutomorphism on its generators. Bonus:
Can you find the same result from calculating the automorphism group without calculating
the normalizer?

Exercise 6 (Outer automorphism of S6) Construct an outer automorphism of S6.

Exercise 7 (Smallest faithful permutation degree) Let G:=SmallGroup(48,48);. What
is the smallest degree n, such that G is isomorphic to a subgroup of Sn?

Exercise 8 (Construct an (external) semidirect product) Construct S4 as semidirect
product S3 × C2

2

Exercise 9 (Decompose a group formally as (internal) semidirect product)
Let G:=PerfectGroup(IsPermGroup,960,1); and N its solvable radical ( the largest solvable
normal subgroup, RadicalGroup). Find a complement C to N in G, using the operation
ComplementClassesRepresentatives. Form (directly, without using IsomorphismGroups)
an isomorphism between G/N and C and use it to write elements of G as pairs in C ×N .
Build an isomorphism between G and an abstract semidirect product of N with G.

Exercise 10 (Quotients of a particular type — generating direct products)
Determine the largest k, such that Ak

6 can be generated by 2 elements. Construct such a
2-element generating set. Hint:

a) GQuotients finds Quotients of a given isomorphism group. What happens if you apply
it to the free group?
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b) What happens if you intersect the kernels of multiple quotients with the same simple
image?

c) Combine the homomorphisms to one homomorphism into the direct product of the images.

Exercise 11 (Forming larger and larger quotients of finitely presented groups) Let
G = 〈x, y, u, v | x2, y3, u10v2uvuv2, xy/u, xy−1/v〉. Construct a large quotient of G.
Hint: G has order 2213452132.

a) Use IsomorphismSimplifiedFpGroup to eliminate two generators.

b) Find subgroups of low index (as far as plausible, at least 30) and intersect. Take the
homomorphism ϕ that is used to define this intersection.

c) Find a subgroup of small index (MaximalSubgroupClassReps, LowLayerSubgroups) of
the image of ϕ such that its abelianization is different than the one of its pre-image
under ϕ.

d) Repeat, if needed.

Exercise 12 (Constructing and inducing representations) Construct the reduced per-
mutation action of A5 over GF(3) (That is the action on the vectors whose coefficients sum
to one.) Then induce this representation to PSL2(9).
Hint: You need to construct the map

g 7→
(
gψ; g̃1g−1

ϕ, . . . , g̃ng−1
ϕ)

where g̃j ∈ T is defined by by rjg = g̃jrjg for coset representatives rj.
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Answers

1

Exercise 1, page 1

The particular NaturalHomomorphismByNormalSubgroup also can be called as MaximalAbelianQuotient.

gap> G:=SmallGroup(60,10);;

gap> NaturalHomomorphismByNormalSubgroup(G,DerivedSubgroup(G));

[ f1, f2, f3, f4 ] -> [ f1, f2, f3, <identity> of ... ]

gap> G:=SymmetricGroup(5);;

gap> MaximalAbelianQuotient(G);

[ (1,2,3,4,5), (1,2) ] -> [ <identity> of ..., f1 ]

gap> MaximalAbelianQuotient(SL(2,5));

CompositionMapping( [ (2,5,4,3)(6,11,16,21 [...] ] -> [ (), () ],

<action isomorphism> )

The image is usually a Pc group, as these are the most efficient to work with (and easiest to
build the factor group). In the third case an action on vectors is taken first, as generically GAP
(without package) cannot decompose in matrix groups. (In the last case it is a permutation
group, as it was not possible to generate a trivial Pc group.)

Exercise 2, page 1

We need to cut out the submatrix at positions (3, 4). This is easiest done by a function.

gap> fct:=mat->mat{[3,4]}{[3,4]};;

gap> hom:=GroupHomomorphismByFunction(G,GL(2,3),fct);

MappingByFunction( <matrix group of size 186624 with

7 generators>, GL(2,3), function( mat ) ... end )

Exercise 3, page 1

First generate the group and a presentation in the desired generators:

gap> s4:=Group((1,2,3,4),(1,2));;

gap> pres:=IsomorphismFpGroupByGenerators(s4,GeneratorsOfGroup(s4));

[ (1,2,3,4), (1,2) ] -> [ F1, F2 ]

gap> fp1:=Range(pres);

<fp group of size 24 on the generators [ F1, F2 ]>

gap> RelatorsOfFpGroup(fp1);

[ F2^2, F1^4, (F2*F1^-1)^3 ]
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Now create another free group with desired generator names, map the relators, and create
the corresponding quotient.

gap> f:=FreeGroup("e","f");;

gap> fiso:=GroupHomomorphismByImages(FreeGroupOfFpGroup(fp1),f,

> FreeGeneratorsOfFpGroup(fp1),GeneratorsOfGroup(f));

[ F1, F2 ] -> [ e, f ]

gap> newrels:=ImagesSet(fiso,RelatorsOfFpGroup(fp1));

[ f^2, e^4, (f*e^-1)^3 ]

gap> new:=f/newrels;

<fp group on the generators [ e, f ]>

gap> Size(new);

24

(Note: Instead of the isomorphism between the free groups, one could have used MappedWord.)

Exercise 4, page 2

gap> fano:=[[1,2,3],[1,4,5],[1,6,7],[2,4,6],[2,5,7],[3,4,7],[3,5,6]];;

gap> sets:=Combinations([1..7],3);;

gap> Length(sets);

35

gap> act:=ActionHomomorphism(s7,sets,OnSets,"surjective");

<action epimorphism>

gap> fans:=List(fano,x->Position(sets,x));

[ 1, 10, 15, 21, 24, 28, 29 ]

gap> sub:=Stabilizer(Image(act),fans,OnSets);

<permutation group of size 168 with 4 generators>

gap> au:=PreImage(act,sub);

Group([ (1,2)(5,6), (1,2,3)(5,6,7), (1,2,3)(4,7,6), (1,4,7,6,2,5,3) ])

Exercise 5, page 2

If we are permitted to calculate the normalizer, we can do so directly, determining for each
normalizer generator the corresponding automorphism.

gap> G:=Group((1,2),(3,4)(5,6),(3,6)(4,5),(7,8),(3,4)(9,10),(3,9)(4,10));;

gap> S10:=SymmetricGroup(10);;

gap> n:=Normalizer(S10,G);

Group([ (1,7)(2,8), (1,8,2,7), (3,9)(4,10), (3,9,5,4,10,6) ])

gap> auts:=List(GeneratorsOfGroup(n),x->ConjugatorAutomorphism(G,x));

[ ^(1,7)(2,8), ^(1,8,2,7), ^(3,9)(4,10), ^(1,2)(3,10,5)(4,9,6)(7,8) ]
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The group we want is generated by these automorphisms

gap> au:=AutomorphismGroup(G);

<group of size 576 with 4 generators>

gap> sub:=Subgroup(au,auts);;

gap> Size(sub);

48

Why did we bother to create the group as subgroup of the automorphism group? This way
GAP knows that the group is generated by group automorphisms, and uses better ways to
find the order. Alternatively, we would have to tell this fact to GAP:

gap> sub:=Group(auts);

<group with 4 generators>

gap> SetIsGroupOfAutomorphismsFiniteGroup(sub,true);

gap> Size(sub);

48

For the bonus part, we find the subgroup of the automorphism group that stabilizes the set
of point stabilizers, collected by orbit lengths:

gap> o:=Orbits(G,MovedPoints(G));

[ [ 1, 2 ], [ 3, 4, 6, 9, 5, 10 ], [ 7, 8 ] ]

gap> oo:=[Union(o[1],o[3]),o[2]];

[ [ 1, 2, 7, 8 ], [ 3, 4, 6, 9, 5, 10 ] ]

gap> stabs:=List(o,x->List(x,p->Stabilizer(G,p)));;

gap> stabs:=List(stabs,Set);

[ [ Group([ (3,5)(4,6), (3,4)(5,6), (3,10,5)(4,9,6), (7,8) ]),

Group([ (3,5)(4,6), (3,4) (5,6), (3,10,5)(4,9,6), (1,2) ]) ],

[ Group([ (5,10)(6,9), (5,6)(9,10), (1,2), (7,8) ]),

Group([ (3,9)(4,10), (3,4) (9,10), (1,2), (7,8) ]),

Group([ (3,6)(4,5), (3,4)(5,6), (1,2), (7,8) ]) ] ]

Now we make a function that has automorphisms act on sets of lists of sets of subgroups,
and take the stabilizer.

gap> act:=function(list,aut)

> return List(list,s->Set(List(s,g->Image(au,g))));

> end;;

gap> sub:=Stabilizer(au,stabs,act);

<group of size 48 with 5 generators>
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Exercise 6, page 2

One such automorphism must be amongst the generators of the automorphism group:

gap> au:=AutomorphismGroup(SymmetricGroup(6));

<group with 3 generators>

gap> First(GeneratorsOfGroup(au),x->not IsInnerAutomorphism(x));

[ (5,6), (1,2,3,4,5) ] -> [ (1,2)(3,5)(4,6), (1,2,3,4,5) ]

Exercise 7, page 2

The type conversion does not help:

gap> NrMovedPoints(Range(IsomorphismPermGroup(G)));

48

The smart-alec solution is

gap> MinimalFaithfulPermutationDegree(G);

6

gap> IsomorphicSubgroups(SymmetricGroup(6),G);

[ [ f1*f2*f3*f4, f1*f4*f5 ] -> [ (3,4,5,6), (1,2)(3,4) ],

[ f1*f2*f3*f4, f1*f4*f5 ] -> [ (2,5,4,6), (1,2)(3,4) ] ]

(So there are actually two such ways, a transitive one and an intransitive one.)
Without the slick functions, one has to look at sets of subgroups in the hope to find a

few of small index, such that their cores intersect trivially. We try for different numbers k
of orbits.

gap> u:=List(ConjugacyClassesSubgroups(G),Representative);;

gap> tup:=Filtered(Combinations(u,1),

x->IsTrivial(Intersection(List(x,y->Core(G,y)))));;

gap> Length(tup);

16

gap> Set(List(tup,x->Sum(List(x,y->Index(G,y)))));

[ 6, 8, 12, 16, 24, 48 ]

gap> tup:=Filtered(Combinations(u,2),

x->IsTrivial(Intersection(List(x,y->Core(G,y)))));;

gap> Length(tup);

434

gap> Set(List(tup,x->Sum(List(x,y->Index(G,y)))));

[ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 25,

26, 27, 28, 30, 32, 36, 40, 48, 49, 50, 51, 52, 54, 56, 60, 64, 72 ]

Clearly we only need to try k subgroups if the degree might be ≥ 2k, that’s why we stop
here. Again we can note that there is an option with one orbit, and one with two orbits.
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Exercise 8, page 2

We first need to find the action of S3 on C2
2 , which we write as matrices. Note that the

matrix action is faithful, so we could use the special version of SemidirectProduct for
matrix groups:

gap> m1:=[[0,1],[1,0]]*One(GF(2)); m2:=[[1,1],[1,0]]*One(GF(2));

[ [ 0*Z(2), Z(2)^0 ], [ Z(2)^0,0*Z(2) ] ]

[ [ Z(2)^0, Z(2)^0 ], [ Z(2)^0,0*Z(2) ] ]

gap> sdp:=SemidirectProduct(Group(m1,m2),GF(2)^2);

<matrix group of size 24 with 3 generators>

However now, lets do it the hard way by writing out the details. First we need both groups.

gap> s3:=SymmetricGroup(3);

Sym( [ 1 .. 3 ] )

gap> v4:=AbelianGroup([2,2]);

<pc group of size 4 with 2 generators>

Next, we construct for each matrix automorphisms of the abelian group. For this we need to
have generators that treat it like a vector space. The easiest is to use a polycyclic generating
set, Pcgs. We then reado off the coefficients from the matrix entries.

gap> pcgs:=Pcgs(v4);

Pcgs([ f1, f2 ])

gap> aut1:=GroupHomomorphismByImages(v4,v4,pcgs,[pcgs[2],pcgs[1]]);

Pcgs([ f1, f2 ]) -> [ f2, f1 ]

gap> aut2:=GroupHomomorphismByImages(v4,v4,pcgs,

> [PcElementByExponents(pcgs,m2[1]),PcElementByExponents(pcgs,m2[2])]);

Pcgs([ f1, f2 ]) -> [ f1*f2, f1 ]

Note how in the second example we acturally read off coefficients directly from the matrix –
that is how one would do it inside a general function.

Now we form a group from the automorphisms. (As we do not calculate in this group, we
do not bother to tellit that it is a group of automorphisms.) Also construct a homomorphism
from S3 to this group.

gap> aut:=Group(aut1,aut2);

<group with 2 generators>

gap> hom:=GroupHomomorphismByImages(s3,aut,[(1,2),(1,2,3)],[aut1,aut2]);

[ (1,2), (1,2,3) ] ->

[ Pcgs([ f1, f2 ]) -> [ f2, f1 ], Pcgs([ f1, f2 ]) -> [ f1*f2, f1 ] ]

gap> sdp:=SemidirectProduct(s3,hom,v4);

<pc group of size 24 with 4 generators>
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Note that GAP automatically decided on representing the product as a polycyclic group
itself, as this is the most effiicent way for solvable groups. We can see that the pc presentation
actually reflects the semidirect product structure.

gap> Image(Embedding(sdp,1));

Group([ f1, f2 ])

gap> Image(Embedding(sdp,2));

Group([ f3, f4 ])

Exercise 9, page 2

Construct the groups and get one complement.

gap> G:=PerfectGroup(IsPermGroup,960,1);;

gap> N:=RadicalGroup(G);;

gap> c:=ComplementClassesRepresentatives(G,N);

[ Group([ (2,14,9,13,15)(3,4,6,7,16)(5,11,12,10,8), (2,6,4,13,10)(3,11,5,7,15)

(8,9,14,12,16) ]), Group([ (2,14,9,13,15 [...]

gap> c:=c[1];

To construct the isomorphism, we take the natural homomorphism G → G/N and restrict
it to C. The isomorphism is the inverse (and we check that it is an isomorphism)

gap> nat:=NaturalHomomorphismByNormalSubgroup(G,N);

[ (2,4)(3,5)(7,15)(8,1[...] ] -> [ (1,2)(4,5), (1,3,4), (), (), (), () ]

gap> res:=RestrictedMapping(nat,c);

[ (2,14,9,13,15)(3,4,6,7,1 [...] ] -> [ (1,2,3,4,5), (1,3,2,4,5) ]

gap> iso:=InverseGeneralMapping(res);

[ (1,2,3,4,5), (1,3,2,4,5) ] -> [ (2,14,9,13,15)(3,4,6,7,16)(5,11,12,10,8),

(2,6,4,13,10)(3,11,5,7,15)(8,9,14,12,16) ]

gap> IsBijective(iso);

true

To decompose, we get the C-part by mapping under the natural homomorphism and then
into C, the N-part is obtained by dividing off the C-part. (Left or right – that is your choice,
it gives isomorphic semidirect products.)

gap> cpart:=nat*iso;

[ (2,4)(3,5)(7,15)(8,14)(10,13)(12,16), [...] ] ->

[ (2,4)(3,5)(7,15)(8,14)(10,13)(12,16), [...], (), (), (), () ]

gap> decomp:=function(elm)

> local cp;

> cp:=Image(cpart,elm);

> return [cp,LeftQuotient(cp,elm)];
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> end;;

gap> r:=Random(G);

(1,14,3)(2,4,7)(5,9,8)(6,10,12)(11,13,16)

gap> d:=decomp(r);

[ (2,5,10)(3,14,15)(4,16,8)(6,9,11)(7,12,13),

(1,14)(2,12)(3,15)(4,5)(6,13)(7,16)(8,11)(9,10) ]

gap> d[1] in c;d[2] in N;

true

true

gap> d[1]*d[2];

(1,14,3)(2,4,7)(5,9,8)(6,10,12)(11,13,16)

Next construct an abstract semidirect product. For that we need to construct the automor-
phisms of N induced by the generators of c and construct a homomorphism form c to the
group of these induced automorphisms.

With that, we can construct the semidirect product.

gap> auts:=List(GeneratorsOfGroup(c),x->ConjugatorIsomorphism(N,x));

[ ^(2,14,9,13,15)(3,4,6,7,16)(5,11,12,10,8),

^(2,6,4,13,10)(3,11,5,7,15)(8,9,14,12,16) ]

gap> autgp:=Group(auts);;

gap> map:=GroupHomomorphismByImages(c,autgp,GeneratorsOfGroup(c),auts);;

gap> sdp:=SemidirectProduct(c,map,N);

<permutation group with 6 generators>

gap> sdp=G;

false

We see that (of course) it does not have the same elements, as G. There now are two ways to
construct an isomorphism. The first version is to give it on generators of C and N separately.
That doesn’t really need the decomposition. We simply use the Embedding command:

gap> cimgs:=List(GeneratorsOfGroup(c),x->Image(Embedding(sdp,1),x));

[ (1,13,8,12,14)(2,3,5,6,15)(4,10,11,9,7)(17,29,24,28,30) [...] ]

gap> nimgs:=List(GeneratorsOfGroup(N),x->Image(Embedding(sdp,2),x));

[ (16,17)(18,23)(19,24)(20,25)(21,22)(26,30)(27,29)(28,31),

(16,18)(17,23)(19,28)(20,21)(22,25)(24,31)(26,27)(29,30), [...] ]

gap> iso:=GroupHomomorphismByImages(G,sdp,Concatenation(GeneratorsOfGroup(c),

> GeneratorsOfGroup(N)),Concatenation(cimgs,nimgs));

[ (2,14,9,13,15)(3,4,6,7,16)(5,11,12,10,8), (2,6,4,1[...]

Alternatively, we could take an existing generating set of G and use our decomposition
function.

10



gap> gens:=SmallGeneratingSet(G);

[ (1,9,2,5,7)(3,8,15,4,14)(6,12,11,10,13), (1,14,16,13,11 [...] ]

gap> decomps:=List(gens,decomp);

[ [(2,12,6,5,15)(3,13,11,14,16)(4,10,8,7,9),(1,9)(2,4)(3,16)(5,12[...] ]

gap> imgs:=List(decomps,

> x->Image(Embedding(sdp,1),x[1])*Image(Embedding(sdp,2),x[2]));

[ (1,11,5,4,14)(2,12,10,13,15)(3,9,7,6,8)(16,24,17,20 [...] ]

gap> iso2:=GroupHomomorphismByImages(G,sdp,gens,imgs);

[ (1,9,2,5,7)(3,8,15,4,14)(6,12,11 [...] ] -> [ (1,11, [...] ]

Exercise 10, page 2

gap> f:=FreeGroup(2);;

gap> q:=GQuotients(f,SimpleGroup("A6"));;

finds 53 quotients with different kernels. Their intersection will have quotient A53
6 , as the

direct product has only the obvious normal subgroups. (This is different if the group is
not simple!) If A54

6 could be generated by two elements, there would have to be another
quuotient.

To construct an explicit generator pair, we need to construct the map onto A53
6 :

gap> a6:=AlternatingGroup(6);;

gap> l:=ListWithIdenticalEntries(Length(q),a6);;

gap> dir:=DirectProduct(l);

<permutation group of size 30481[...] with 106 generators>

Next we take for each generator of the free group the images under each of the quotients
and embed into the corresponding copy of the direct product, and take the product. (Note
the slick use of f.(g) to access a generator with a variable number.)

gap> gens:=List([1,2],g->Product([1..Length(q)],i->Image(Embedding(dir,i),

> Image(q[i],f.(g)))));

[ (2,3)(4,5)(9,10)(11,12)(14,16)(17,18)(21,22,23) [...]

Finally we verify.

gap> Size(Group(gens))=Size(dir);

true
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Exercise 11, page 3

We start constructing the group on two generators and find a quotient from LowIndexSubgroups.

gap> f:=FreeGroup("x","y","u","v");;

gap> rels:=ParseRelators(f,"x2,y3,u10v2uvuv2,xyU,xYV");

[ x^2, y^3, u^10*v*(v*u)^2*v^2, x*y*u^-1, x*y^-1*v^-1 ]

gap> g:=f/rels;

<fp group on the generators [ x, y, u, v ]>

gap> IsomorphismSimplifiedFpGroup(g);

[ x, y, u, v ] -> [ u*y^-1, y, u, u*y^-2 ]

gap> g:=Image(last);

<fp group on the generators [ y, u ]>

Next we construct the homomorphism arising from the intersection of low index subgroups

gap> l:=LowIndexSubgroups(g,30);;

gap> List(l,IndexInWholeGroup);

[ 1, 13, 26, 13, 26, 26, 26, 26, 26, 26 ]

gap> k:=Intersection(l);

Group(<fp, no generators known>)

gap> q:=DefiningQuotientHomomorphism(k);;

gap> p:=Image(q);; Collected(Factors(Size(p)));

[ [ 2, 19 ], [ 3, 4 ], [ 5, 2 ], [ 13, 2 ] ]

Next we find a maximal subgroup for which the abelianization differs and take the preimage

gap> m:=MaximalSubgroupClassReps(p);

[...]

gap> m:=ShallowCopy(m);; # as m is immutable

gap> SortBy(m,x->Index(p,x));

gap> List(m,x->Index(p,x));

[ 13, 13, 26, 65, 65, 144, 234, 300, 325, 4096, 4096 ]

gap> sub:=First(m,x->AbelianInvariants(x)<>AbelianInvariants(PreImage(q,x)));;

gap> Index(p,sub);

4096

gap> AbelianInvariants(sub);

[ ]

gap> u:=PreImage(q,sub);

Group(<fp, no generators known>)

gap> AbelianInvariants(u);

[ 2 ]

In this case it is enough to take the derived subgroup. (Note: A slicker version is given by
LargerQuotientBySubgroupAbelianization, which tries to avoid already known abelian-
ization parts.)
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gap> new:=DerivedSubgroup(u);;

gap> new:=LargerQuotientBySubgroupAbelianization(q,sub);; # alternative

gap> Index(g,new);

8192

As the index is comparatively large, we do not try Intersection in g, but embed by hand
into a direct product 2).

gap> q2:=DefiningQuotientHomomorphism(new);;

gap> p2:=Image(q2);;

gap> Size(p2);

46006272

gap> dir:=DirectProduct(p,p2);;

gap> imgs:=List(GeneratorsOfGroup(g),x->Image(Embedding(dir,1),Image(q,x))*

> Image(Embedding(dir,2),Image(q2,x)));

[ (2,3,4)(5,6,7)(8,9,11)(10,13,17)(12,15,19)(14,18,20)(16,21,23)(22,24,2 [...]

gap> p3:=SubgroupNC(dir,imgs);

gap> Collected(Factors(Size(p3)));

[ [ 2, 20 ], [ 3, 4 ], [ 5, 2 ], [ 13, 2 ] ]

So get the remaining 2, we have to repeat using second maximals as well:

gap> m:=LowLayerSubgroups(p3,2);

gap> m:=ShallowCopy(m);;

gap> SortBy(m,x->Index(p3,x));

gap> sub:=First(m,x->AbelianInvariants(x)<>AbelianInvariants(PreImage(q3,x)));;

gap> Index(p3,sub);

3744

gap> AbelianInvariants(sub);

[ 3, 3, 4 ]

gap> AbelianInvariants(PreImage(q3,sub));

[ 3, 3, 8 ]

Now LargerQuotientBySubgroupAbelianization really helps, as it ignores the 32. We
then do the same embedding into a direct product

gap> new3:=LargerQuotientBySubgroupAbelianization(q3,sub);

Group(<fp, no generators known>)

gap> Index(g,new3);

29952

gap> q4:=DefiningQuotientHomomorphism(new3);;

gap> p4:=Image(q4);

<permutation group of size 358848921600 with 2 generators>

gap> NrMovedPoints(p4);

29952
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gap> Collected(Factors(Size(p4)));

[ [ 2, 20 ], [ 3, 4 ], [ 5, 2 ], [ 13, 2 ] ]

gap> dir:=DirectProduct(p3,p4);;

gap> imgs:=List(GeneratorsOfGroup(g),x->Image(Embedding(dir,1),Image(q3,x))*

> Image(Embedding(dir,2),Image(q4,x)));;

gap> p5:=Group(imgs);;

gap> Collected(Factors(Size(p5)));

[ [ 2, 21 ], [ 3, 4 ], [ 5, 2 ], [ 13, 2 ] ]

If we take the order of the group as given, we know that p5 is a faithful permutation image.

Exercise 12, page 3

Construct a basis and the action. (The permutation orbit is slightly overkill...)

gap> a5:=AlternatingGroup(5);

gap> vec:=[1,-1,0,0,0]*One(GF(3));

[ Z(3)^0,Z(3),0*Z(3),0*Z(3),0*Z(3) ]

gap> o:=Orbit(Group((1,2,3,4,5)),vec,Permuted);

[ [ Z(3)^0,Z(3),0*Z(3),0*Z(3),0*Z(3) ], [ 0*Z(3),Z(3)^0,Z(3),0*Z(3),0*Z(3) ],

[ 0*Z(3),0*Z(3),Z(3)^0,Z(3),0*Z(3) ], [ 0*Z(3),0*Z(3),0*Z(3),Z(3)^0,Z(3) ],

[ Z(3),0*Z(3),0*Z(3),0*Z(3),Z(3)^0 ] ]

gap> o:=Filtered(TriangulizedMat(o),x->not IsZero(x));

[ [ Z(3)^0,0*Z(3),0*Z(3),0*Z(3),Z(3) ], [ 0*Z(3),Z(3)^0,0*Z(3),0*Z(3),Z(3) ],

[ 0*Z(3),0*Z(3),Z(3)^0,0*Z(3),Z(3) ], [ 0*Z(3),0*Z(3),0*Z(3),Z(3)^0,Z(3) ] ]

gap> mats:=List(GeneratorsOfGroup(a5),

> g->List(o,v->SolutionMat(o,Permuted(v,g))));

[ [ [ Z(3),Z(3)^0,0*Z(3),0*Z(3) ], [ Z(3),0*Z(3),Z(3)^0,0*Z(3) ],

[ Z(3),0*Z(3),0*Z(3),Z(3)^0 ], [ Z(3),0*Z(3),0*Z(3),0*Z(3) ] ],

[ [ Z(3)^0,0*Z(3),Z(3),0*Z(3) ], [ 0*Z(3),Z(3)^0,Z(3),0*Z(3) ],

[ 0*Z(3),0*Z(3),Z(3),Z(3)^0 ], [ 0*Z(3),0*Z(3),Z(3),0*Z(3) ] ] ]

gap> rep:=GroupHomomorphismByImages(a5,Group(mats),GeneratorsOfGroup(a5),mats);

[ (1,2,3,4,5), (3,4,5) ] -> [...]

Note: There is IrreducibleRepresentations, but that produces irrational entries.
To induce to PSL2(9), we construct the group and find an embedding of A5, as well as a

transversal and action on cosets. We also make rep be defined on this subgroup.

gap> psl:=PSL(2,9);

Group([ (3,9,4,6)(5,10,8,7), (1,2,4)(5,6,8)(7,9,10) ])

gap> max:=Filtered(MaximalSubgroupClassReps(psl),x->Size(x)=60);

[ Group([ (1,10,5,2,3)(4,8,6,9,7), (1,10,7)(3,9,8)(4,5,6) ]),

Group([ (1,10)(2,7)(3,6)(5,8), (2,4,3)(5,10,6)(7,8,9) ]) ]

gap> iso:=IsomorphismGroups(a5,max[1]);
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[ (2,4)(3,5), (1,2,3) ] -> [ (1,2)(5,10)(6,9)(7,8), (2,5,8)(3,6,7)(4,10,9) ]

gap> t:=RightTransversal(psl,Image(iso));

RightTransversal(Group([ (3,9,4,6)(5,10,8,7), (1,2,4)(5,6,8)(7,9,10) ]),

Group([ (1,10,5,2,3)(4,8,6,9,7), (1,10,7)(3,9,8)(4,5,6) ]))

gap> ca:=ActionHomomorphism(psl,t,OnRight); # documented abuse of notation

<action homomorphism>

gap> rep:=InverseGeneralMapping(iso)*rep;

[ (1,2)(5,10)(6,9)(7,8), (2,5,8)(3,6,7)(4,10,9) ] ->

[ [ [ Z(3)^0,0*Z(3),Z(3),0*Z(3) ], [ 0*Z(3),0*Z(3),Z(3),Z(3)^0 ],

[ 0*Z(3),0*Z(3),Z(3),0*Z(3) ], [ 0*Z(3),Z(3)^0,Z(3),0*Z(3) ] ],

[ [ 0*Z(3),Z(3)^0,0*Z(3),0*Z(3) ], [ 0*Z(3),0*Z(3),Z(3)^0,0*Z(3) ],

[ Z(3)^0,0*Z(3),0*Z(3),0*Z(3) ], [ 0*Z(3),0*Z(3),0*Z(3),Z(3)^0 ] ] ]

The induction to PSL2(9) is a subgroup of the wreath product GL4(3) oS6. Construct it and
the seven embeddings (Number 7 is the complement):

gap> wr:=WreathProduct(GL(4,3),SymmetricGroup(6));

<matrix group of size 14682417[...] with 4 generators>

gap> emb:=List([1..7],i->Embedding(wr,i));;

As the map looks somewhat complicated, it might be easier to have it be produced by a
function, rather than a complicated List construct:

myimg:=function(elm)

local perm,img,i,j,r;

perm:=Image(ca,elm);

img:=Image(emb[7],perm);

for i in [1..6] do

j:=i/perm;

r:=t[j]*elm/t[i];

img:=img*Image(emb[i],Image(rep,r));

od;

return img;

end;

gap> ind:=GroupGeneralMappingByImagesNC(psl,wr,GeneratorsOfGroup(psl),

> List(GeneratorsOfGroup(psl),myimg));;

gap> IsSingleValued(ind);

true

We use GroupGeneralMappingByImagesNC to avoid expensive element tests in wr. The
final IsSingleValued verifies that is is a homomorphism. Instead (without test) we could
have used:

gap> ind:=GroupHomomorphismByFunction(psl,wr,myimg);;

gap> ind:=AsGroupGeneralMappingByImages(ind);;
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