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Background



Background - the Monster group

I Denoted M, the Monster group is the largest of the 26

sporadic groups in the classification of finite simple groups

I It was constructed by R. Griess in 1982 as Aut(VM) where VM

is a 196 884 - dimensional, real, commutative, non-associative

algebra known as the Griess or Monster algebra

I The Monster group contains two conjugacy classes of

involutions - denoted 2A and 2B - and M = 〈2A〉

I If t, s ∈ 2A then ts is of order at most 6 and belongs to one

of nine conjugacy classes:

1A, 2A, 2B, 3A, 3C , 4A, 4B, 5A, 6A.



Background - the Griess algebra

I In 1984, J. Conway showed that there exists a bijection ψ

between the 2A involutions and certain idempotents in the

Griess algebra called 2A-axes

I The 2A-axes generate the Griess algebra i.e.

VM = 〈〈ψ(t) : t ∈ 2A〉〉

I If t, s ∈ 2A then the algebra 〈〈ψ(t), ψ(s)〉〉 is called a dihedral

subalgebra of VM and has one of nine isomorphism types,

depending on the conjugacy class of ts.



Background - the Griess algebra

Example

Suppose that t, s ∈ 2A such that ts ∈ 2A as well. Then the algebra

V := 〈〈ψ(t), ψ(s)〉〉

is called the 2A dihedral algebra.

The algebra V also contains the axis ψ(ts). In fact, it is of

dimension 3:

V = 〈ψ(t), ψ(s), ψ(ts)〉R.



Background - the Majorana fusion law

The 2A-axes of the Griess algebra are semisimple with eigenvalues

1, 0, 1
4 and 1

32 .

That is to say, if a ∈ VM is a 2A-axis then

VM = V a
1 ⊕ V a

0 ⊕ V a
1
4
⊕ V a

1
32

where

V a
µ = {v ∈ VM | av = µv}.



Background - the Majorana fusion law

Moreover, the 2A-axes obey the Majorana fusion law. That is to

say, if a ∈ VM is a 2A-axis, then

u ∈ V a
µ , v ∈ V a

ν ⇒ uv ∈
⊕
λ∈µ∗ν

V a
λ .

Where µ ∗ ν is a set given by the following table.

∗ 1 0 1
4

1
32

1 1 ∅ 1
4

1
32

0 ∅ 0 1
4

1
32

1
4

1
4

1
4 1, 0 1

32

1
32

1
32

1
32

1
32 1, 0, 14



Background - Jordan algebras

A Jordan algebra V is a non-associative, commutative algebra over

a field such that for all u, v ∈ V , (uv)(uu) = u(v(uu)).

If a is an idempotent in a Jordan algebra then a is semisimple with

eigenvalues 1, 0 and 1
2 .

If u ∈ V a
µ and v ∈ V a

ν then uv ∈
⊕

λ∈µ∗ν V
a
λ where µ ∗ ν is a set

given by the following table.

∗ 1 0 1
2

1 1 ∅ 1
2

0 ∅ 0 1
2

1
2

1
2

1
2 1, 0



Axial algebras



Axial algebras - fusion laws

Let R be a commutative ring with unity and let V be a

commutative R-algebra.

Definition 2.1

A fusion law is a pair (F , ∗) such that F ⊆ R and such that

∗ : F × F → 2F is a symmetric map.

Definition 2.2

If a ∈ V is an idempotent then a is a (F , ∗)-axis if

(i) a is semisimple and V =
⊕

λ∈F V a
λ ;

(ii) for all µ, ν ∈ F we have V a
µV

a
ν ⊆

⊕
λ∈ν∗µ V

a
λ .



Axial algebras - fusion laws

Example

The Majorana fusion law, (M, ∗):

∗ 1 0 1
4

1
32

1 1 ∅ 1
4

1
32

0 ∅ 0 1
4

1
32

1
4

1
4

1
4 1, 0 1

32

1
32

1
32

1
32

1
32 1, 0, 14



Axial algebras - fusion laws

Example

The fusion law of Jordan type η :

∗ 1 0 η

1 1 ∅ η

0 ∅ 0 η

η η η 1, 0



Axial algebras - fusion laws

Definition 2.3

A (F , ∗)-axial algebra is a pair (V ,A) where V is a commutative

R-algebra and A ⊆ V is a generating set of (F , ∗)-axes.

Definition 2.4

A (F , ∗)-axis is primitive if its 1-eigenspace is one dimensional, i.e.

V
(a)
1 = 〈a〉R .

Definition 2.5

A (F , ∗)-axial algebra (V ,A) is primitive if a is primitive for all

a ∈ A.



Axial algebras - Frobenius forms

Definition 2.6

A Frobenius form on a commutative algebra V is a (non-zero)

bilinear form 〈 , 〉 such that for all u, v ,w ∈ V

〈u, vw〉 = 〈uv ,w〉.

We usually require that a Frobenius form 〈 , 〉 on an axial algebra

(V ,A) satisfies 〈a, a〉 = 1 for all axes a ∈ V .



Majorana algebras



Majorana algebras

A Majorana algebra is a primitive axial algebra (V ,A) that satisfies

the Majorana fusion law and that admits a a Frobenius form 〈 , 〉
such that

I 〈 , 〉 is an inner product, i.e. for all v ∈ V ,

〈v , v〉 = 0⇔ v = 0;

I 〈 , 〉 obeys Norton’s inequality, i.e for all u, v ∈ V

〈uu, vv〉 ≥ 〈uv , uv〉.

In this case, we call the elements of A Majorana axes.



Majorana algebras - Majorana involutions

Let (V ,A) be an axial algebra that obeys the Majorana fusion law.

For a ∈ A, let τ(a) ∈ GL(V ) be such that

τ(a) : v 7→


v if v ∈ V

(a)
1 ⊕ V

(a)
0 ⊕ V

(a)
1
4

−v if v ∈ V
(a)
1
32

.

We call the τ(a) the Majorana involutions of V .



Majorana algebras - Majorana involutions

Let (V ,A) be an axial algebra that obeys the Majorana fusion law.

Proposition 3.1

For all a ∈ A, τ(a) ∈ Aut(V ), i.e. for all u, v ∈ V

uτ(a)v τ(a) = (uv)τ(a).

Proposition 3.2

If V admits a Frobenius form then for all a ∈ A, τ(a) preserves the

form, i.e. for all u, v ∈ V ,

〈uτ(a), v τ(a)〉 = 〈u, v〉.



Majorana algebras - the Griess algebra

Example

The Griess algebra VM is a Majorana algebra such that

I the Majorana axes are the 2A-axes;

I the Majorana involutions are the 2A-involutions of M.



Majorana algebras - Majorana representations

Definition 3.3

A Majorana representation is a tuple (G ,T ,V , ϕ, ψ) where

I G is a finite group;

I T is a set of involutions such that G = 〈T 〉 and TG = T ;

I (V ,A) is a Majorana algebra;

I ϕ : G → GL(V ) is a linear representation and ψ : T → A is a

bijective map such that for all t ∈ T and g ∈ G

τ(ψ(t)) = ϕ(t) and ψ(tg ) = ψ(t)ϕ(g).



Informally:

1. take a group G and a generating set of involutions T ;

2. take a set of Majorana axes that are indexed by the elements

of T , i.e. A = {at | t ∈ T};

3. then G will act on A via its conjugation action on T ;

4. construct the Majorana representation V generated by A and

extend the action of G to the whole of V .



Majorana algebras - Sakuma’s theorem

Theorem 3.4

Suppose that (V ,A) is a Majorana algebra. Let a, b ∈ A and let

U = 〈〈a, b〉〉. Then U has one of nine isomorphism types, each of

which occurs as a subalgebra of the Griess algebra.

These algebras are called dihedral algebras and have dimension as

given below.

type 1A 2A 2B 3A 3C 4A 4B 5A 6A

dim 1 3 2 4 3 5 5 6 8



Majorana algebras - Sakuma’s theorem

Corollary 3.5

Let U = 〈〈a, b〉〉 be a dihedral algebra of type NX then τ(a) and

τ(b) generate in GL(V ) a dihedral group D of order 2N that acts

on U with kernel Z (D).

In particular, if (G ,T ,V ) is a Majorana representation then (G ,T )

is a 6-transposition group.

Definition 3.6

A pair (G ,T ) is a 6-transposition group if G is a group and T is a

generating set of involutions of G such that TG = T and such

that for all t, s ∈ T , |ts| ≤ 6.



Majorana algebras - Sakuma’s theorem

Corollary 3.7

The following are the only non-trivial embeddings of one dihedral

algebra into another:

2A ↪→ 4B, 2B ↪→ 4A, 2A ↪→ 6A, 3A ↪→ 6A



The algorithm



The algorithm

Let (V ,A) be an axial algebra. Then we say that V is k-closed if

V = 〈x1x2 . . . xk | xi ∈ A〉.

In 2012, Ákos Seress announced an algorithm in GAP to construct

2-closed Majorana representations.

Sadly, he passed away shortly afterwards and the full details of his

code were never recovered.

Markus Pfeiffer and I have reimplemented his algorithm and

extended it to n-closed Majorana representations.



The algorithm

Consequences:

I construction of all previously known Majorana representations,

including representations of A7 and M11;

I classification-type results, e.g. minimal 3-generated Majorana

algebras

I significant new examples including an infinite family of

Majorana algebras.



The algorithm

Input: A finite group G and set of involutions T such that

G = 〈T 〉 and TG = T .

Output: A Majorana algebra. In particular, a spanning set C of V

along with the algebra and inner product values on C × C .



Step 0 - shapes

Recall: we take A = {at | t ∈ T} and V = 〈〈A〉〉.

For all t, s ∈ T , if |ts| = N then 〈〈at , as〉〉 is a dihedral algebra of

type NX for X ∈ {A,B,C} (Theorem 3.4).

The ”inclusions” of dihedral algebras (Corollary 3.7) put further

restrictions on the possible types of the dihedral algebras.

If {t0, s0}, {t1, s1}, . . . , {tk , sk} are the representatives of the orbits

of G on unordered pairs of T then the shape of a representation

(G ,T ,V ) is a tuple consisting of the types of the algebras

〈〈ati , asi 〉〉 for 1 ≤ i ≤ k .



Step 0 - shapes

Example

Let G = S4 and T = (1, 2)G . There are three orbits:

{t, s} 〈〈at , as〉〉
{(1, 2), (1, 2)} 1A

{(1, 2), (1, 3)} 3A or 3C

{(1, 2), (3, 4)} 2A or 2B

So there are four possible shapes of a Majorana representation

(G ,T ,V ).



Step 1 - setup

We start by attempting to construct the 2-closed algebra, i.e.

〈atas | t, s ∈ T 〉.

The dihedral algebras 1A, 2B, 2A, 3C and 4B are 1-closed but the

dihedral algebras 3A, 4A, 5A and 6A are 2-closed.

Record any new spanning set vectors coming from the dihedral

algebras, along with the Majorana axes, in a list called coords.

Also record all algebra and inner products and eigenvectors coming

from the known structures of the dihedral algebras.



Step 1 - setup

The action of G preserves the algebra and inner product on V .

We calculate representatives of the orbits of G on unordered pairs

of elements of coords and store them in a list called pairreps.

We only store the algebra and inner product values for the pairs of

vectors given by pairreps.

We also store other data that allows us to recover the product of

two generic vectors from these representatives.

The group G acts on coords via signed permutations.



Step 1 - setup

Example

Take G = S4, T = (1, 2)G , shape = (1A, 3A, 2B). Then V

contains four 3A dihedral algebras:

U1 := 〈〈a(2,3), a(2,4)〉〉

U2 := 〈〈a(1,3), a(1,4)〉〉

U3 := 〈〈a(1,2), a(1,4)〉〉

U4 := 〈〈a(1,2), a(1,3)〉〉.

So coords = {at | t ∈ T} ∪ {ui | 1 ≤ i ≤ 4} where the ui are

called 3A-axes and ui ∈ Ui for 1 ≤ i ≤ 4.



Step 2 - inner products

Using the fact that ∀u, v ,w ∈ V ,

〈uv ,w〉 = 〈u, vw〉

we can find new inner product values.



Step 2 - inner products

Example

G = S4, T = (1, 2)G , coords = {at | t ∈ T} ∪ {ui | 1 ≤ i ≤ 4}.

From the known values of dihedral algebras, we know that

a(1,3)a(2,4) = 0⇒ 〈a(1,3), a(2,3)a(2,4)〉 = 〈a(1,3)a(2,4), a(2,4)〉 = 0

But also

a(2,3)a(2,4) =
1

32
(2a(2,3) + 2a(2,4) + a(3,4))−

135

2048
u1

So

〈a(1,3), a(2,3)a(2,4)〉 =
39

8192
− 135

2048
〈a(1,3), u1〉 ⇒ 〈a(1,3), u1〉 =

13

180
.



Step 3 - fusion

Recall that V obeys the Majorana fusion rule:

∗ 1 0 1
4

1
32

1 1 ∅ 1
4

1
32

0 ∅ 0 1
4

1
32

1
4

1
4

1
4 1, 0 1

32

1
32

1
32

1
32

1
32 1, 0, 14

So if u and v are already known to be eigenvectors and their

product uv is known then we can use this to find new eigenvectors.



Step 3 - fusion

Recall that the spanning set indexed by coords is not necessarily a

linearly independent set of vectors.

Recall also that for all a ∈ A

V = V a
1 ⊕ V a

0 ⊕ V a
1
4
⊕ V a

1
32
.

Thus, if there exists v ∈ V a
µ ∩ V a

ν such that µ 6= ν then we must

have v = 0. Such vectors form what we call the nullspace of the

algebra.



Step 4 - algebra products

We calculate new algebra products from the following sources:

I if a ∈ A and v ∈ V a
µ then av = µv ;

I if v is in the nullspace of V then uv = 0 for all u ∈ V ;

I the resurrection principle.

Each of these leads to a linear equation whose indeterminates are

the unknown algebra product values. We use these equations to

build a system of linear equations that we solve in order to find

new algebra products.



The algorithm

Step 0 shapes;

Step 1 setup;

Step 2 inner products;

Step 3 fusion;

Step 4 algebra products.

Loop over steps 2 - 4 until no more algebra products can be found.

If still algebra products remain unknown then extend the spanning

set by vectors for the form uv where u and v are in the spanning

set of V (2) (the 2-closed part of V ) and uv is an unknown

product. Again, repeat steps 2 - 4 ...
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