
Group Homomorphisms In 
GAP: Connecting And 

(De)Composing Groups
Alexander Hulpke 

Department of Mathematics 
Colorado State University 

Fort Collins, CO, 80523, USA 
www.math.colostate.edu/~hulpke

Aachen, November 21, 2018

http://www.math.colostate.edu/~hulpke


Why Homomorphisms ?
Mathematics can be considered as the study of 
(classes of) functions between sets. 

Structure-preserving functions between groups are 
group homomorphisms. 

They allow to transfer results from one group to 
another, or to build new groups from two 
constituents. 

Also: Many advanced calculations require them.



Language

A (structure preserving) general map is defined on a subset of 
its source and maps into its range. It can be injective, 
surjective, bijective. Its image is the set of all element images. 

We can calculate the Image (or ImagesRepresentative) 
of a source element, PreImagesRepresentative 
(PreImage is a coset) of a range element, and its 
KernelOfMultiplicativeGeneralMapping. 
Homomorphisms are general maps that are total and single 
valued.



Basic Tasks
1.Create Homomorphisms (next) 

2.Image of an Element: Image, 
ImagesRepresentative 

3.Pre-Image, PreImagesRepresentative (element 
that yields particular image) 

4.Kernel: KernelOfMultiplicativeGeneralMapping 

5.Properties: IsInjective, IsSurjective, IsBijective 

6.RestrictedMapping



...And How To Find Them
There are fundamentally three ways how 
homomorphisms can be created: 

Group Actions 

Listing generators and their images 

A recipe to calculate images 

Induced by conjugation (InnerAutomorphism, 
ConjugatorAutomorphism)



G acts on Ω, if |Ω|=n, this gives 𝜑:G→Sn. 
Operation ActionHomomorphism. 

Arguments: Group, Domain, [generators, actors,] 
action function [,"surjective"]. 
Points arranged same way as Ω.

Group Actions

gap> g:=TransitiveGroup(8,20);;
gap> b:=Blocks(g,MovedPoints(g));
[ [ 1, 5 ], [ 2, 6 ], [ 3, 7 ], [ 4, 8 ] ]
gap> hom:=ActionHomomorphism(g,b,OnSets);
<action homomorphism>
gap> Index(Range(hom),Image(hom));
6
gap> g.2;Image(hom,g.2);
(1,2,3,8)(4,5,6,7)  //  (1,2,3,4)



G acts on Ω, if |Ω|=n, this gives 𝜑:G→Sn. 
Operation ActionHomomorphism. 

Arguments: Group, Domain, [generators, actors,] 
action function [,"surjective"]. 
Points arranged same way as Ω.

Group Actions

gap> g:=TransitiveGroup(8,20);;
gap> b:=Blocks(g,MovedPoints(g));
[ [ 1, 5 ], [ 2, 6 ], [ 3, 7 ], [ 4, 8 ] ]
gap> hom:=ActionHomomorphism(g,b,OnSets);
<action homomorphism>
gap> Index(Range(hom),Image(hom));
6
gap> g.2;Image(hom,g.2);
(1,2,3,8)(4,5,6,7)  //  (1,2,3,4)

When calculating images, a 
Dictionary is used to keep track. 
Good dictionary methods are 

implemented for certain common 
types of objects, depending on 

domain. 



G acts on Ω, if |Ω|=n, this gives 𝜑:G→Sn. 
Operation ActionHomomorphism. 

Arguments: Group, Domain, [generators, actors,] 
action function [,"surjective"]. 
Points arranged same way as Ω.

Group Actions

gap> g:=TransitiveGroup(8,20);;
gap> b:=Blocks(g,MovedPoints(g));
[ [ 1, 5 ], [ 2, 6 ], [ 3, 7 ], [ 4, 8 ] ]
gap> hom:=ActionHomomorphism(g,b,OnSets);
<action homomorphism>
gap> Index(Range(hom),Image(hom));
6
gap> g.2;Image(hom,g.2);
(1,2,3,8)(4,5,6,7)  //  (1,2,3,4)

If group elements act through 
homomorphic images.



G acts on Ω, if |Ω|=n, this gives 𝜑:G→Sn. 
Operation ActionHomomorphism. 

Arguments: Group, Domain, [generators, actors,] 
action function [,"surjective"]. 
Points arranged same way as Ω.

Group Actions

gap> g:=TransitiveGroup(8,20);;
gap> b:=Blocks(g,MovedPoints(g));
[ [ 1, 5 ], [ 2, 6 ], [ 3, 7 ], [ 4, 8 ] ]
gap> hom:=ActionHomomorphism(g,b,OnSets);
<action homomorphism>
gap> Index(Range(hom),Image(hom));
6
gap> g.2;Image(hom,g.2);
(1,2,3,8)(4,5,6,7)  //  (1,2,3,4)

An ordinary GAP function that describes how a 
point is mapped under a group element. Special 
treatment in the library for certain pre-defined 
actions, such as OnRight, OnPoints and OnSets.



G acts on Ω, if |Ω|=n, this gives 𝜑:G→Sn. 
Operation ActionHomomorphism. 

Arguments: Group, Domain, [generators, actors,] 
action function [,"surjective"]. 
Points arranged same way as Ω.

otherwise 
into Sn

Group Actions

gap> g:=TransitiveGroup(8,20);;
gap> b:=Blocks(g,MovedPoints(g));
[ [ 1, 5 ], [ 2, 6 ], [ 3, 7 ], [ 4, 8 ] ]
gap> hom:=ActionHomomorphism(g,b,OnSets);
<action homomorphism>
gap> Index(Range(hom),Image(hom));
6
gap> g.2;Image(hom,g.2);
(1,2,3,8)(4,5,6,7)  //  (1,2,3,4)



By Generators And Images
In same way as linear transformations yield a matrix: 

Give Source, Range, Source generators, and their 
images. By default will check whether its is homom. 

Needs to decompose into generators. Easy if source 
consists of words and generators are single letters.
gap> map:=GroupHomomorphismByImages(g,g,
> GeneratorsOfGroup(g),
> List(GeneratorsOfGroup(g),Inverse) #sheer dumb luck
gap> map in AutomorphismGroup(g);
true
gap> GroupHomomorphismByImages(g,g,GeneratorsOfGroup(g),
> Reversed(GeneratorsOfGroup(g))); #not a homom.
fail



By Generators And Images
In same way as linear transformations yield a matrix: 

Give Source, Range, Source generators, and their 
images. By default will check whether its is homom. 

Needs to decompose into generators. Easy if source 
consists of words and generators are single letters.
gap> map:=GroupHomomorphismByImages(g,g,
> GeneratorsOfGroup(g),
> List(GeneratorsOfGroup(g),Inverse) #sheer dumb luck
gap> map in AutomorphismGroup(g);
true
gap> GroupHomomorphismByImages(g,g,GeneratorsOfGroup(g),
> Reversed(GeneratorsOfGroup(g))); #not a homom.
fail

Otherwise variant of membership test: Divide off group elements 
and multiply together corresponding images. 

Convenient Concept: Use Source × Range and do membership 
test using Source-part only.



By Generators And Images
In same way as linear transformations yield a matrix: 

Give Source, Range, Source generators, and their 
images. By default will check whether its is homom. 

Needs to decompose into generators. Easy if source 
consists of words and generators are single letters.
gap> map:=GroupHomomorphismByImages(g,g,
> GeneratorsOfGroup(g),
> List(GeneratorsOfGroup(g),Inverse) #sheer dumb luck
gap> map in AutomorphismGroup(g);
true
gap> GroupHomomorphismByImages(g,g,GeneratorsOfGroup(g),
> Reversed(GeneratorsOfGroup(g))); #not a homom.
fail



Interpret As Generators/Images
For a homomorphism, 
MappingGeneratorsImages returns generators of 
the source and a corresponding list of images. (For 
GHBI this is the stored data.) 
AsGroupGeneralMappingByImages produces 
an equal GHBI. This can be useful if the action is 
expensive.

gap> hom; #action homomorphism from two slides ago
<action homomorphism>
gap> MappingGeneratorsImages(hom);
[ [ (2,6)(3,7), (1,2,3,8)(4,5,6,7) ], [ (), (1,2,3,4) ] ]
gap> AsGroupGeneralMappingByImages(hom);
[ (2,6)(3,7), (1,2,3,8)(4,5,6,7) ] -> [ (), (1,2,3,4) ]



Trust, But Verify
GroupHomomorphismByImages will test that 
the elements are in the groups we claim and that the 
map is a homomorphism. These tests can be 
expensive (or infeasible). 
Use GroupHomomorphismByImagesNC to 
avoid some tests, or even use 
GroupGeneralMappingByImagesNC
gap> g:=PGL(7,3);;NrMovedPoints(g);
1093
gap> GroupHomomorphismByImages(g,Group(()), gens,
> List(gens,x->()));;time;
9801
gap> GroupHomomorphismByImagesNC(g,Group(()), gens,
> List(gens,x->()));;time;
1



By Recipe
In some cases one can describe by a (GAP-)function 
what the homomorphism is supposed to do. 
Gets around factoring in generators. Useful for 
Composition Tree etc. 
Also can give function for pre-image or inverse. 
No test on being a homomorphism is done.
gap> g:=Group((1,2,3,4)(5,6,7,8),(1,2)(6,7));;
gap> fun:=x->RestrictedPerm(x,[1..4]);;
gap> hom:=GroupHomomorphismByFunction(g,
> SymmetricGroup(4),fun);
MappingByFunction( Group([ (1,2,3,4)(5,6,7,8), (1,2)
(6,7) ]), Sym( [ 1 .. 4 ] ), function( x ) ... end )
gap> hom=ActionHomomorphism(g,[1..4]);
true



Homomorphisms As Output
Some operations return homomorphism, rather than just an object 
which would be source or range. GAP might choose the source or 
range, even what kind of groups it is. 

Conversion IsomorphismPermGroup, (caveat: potentially 
large degree), IsomorphismPcGroup, 
IsomorphismSpecialPcGroup, IsomorphismFpGroup,... 

Factor groups: NaturalHomomorphismByNormalSubgroup 
EpimorphismFromFreeGroup for Factorization into 
generators. 
Make nicer: SmallerDegreePermutationRepresentation, 

IsomorphismSimplifiedFpGroup.



Homomorphisms As Output
Some operations return homomorphism, rather than just an object 
which would be source or range. GAP might choose the source or 
range, even what kind of groups it is. 

Conversion IsomorphismPermGroup, (caveat: potentially 
large degree), IsomorphismPcGroup, 
IsomorphismSpecialPcGroup, IsomorphismFpGroup,... 

Factor groups: NaturalHomomorphismByNormalSubgroup 
EpimorphismFromFreeGroup for Factorization into 
generators. 
Make nicer: SmallerDegreePermutationRepresentation, 

IsomorphismSimplifiedFpGroup.

Represented internally in a 
better way - often calculations 
are significantly faster.



Homomorphisms As Output
Some operations return homomorphism, rather than just an object 
which would be source or range. GAP might choose the source or 
range, even what kind of groups it is. 

Conversion IsomorphismPermGroup, (caveat: potentially 
large degree), IsomorphismPcGroup, 
IsomorphismSpecialPcGroup, IsomorphismFpGroup,... 

Factor groups: NaturalHomomorphismByNormalSubgroup 
EpimorphismFromFreeGroup for Factorization into 
generators. 
Make nicer: SmallerDegreePermutationRepresentation, 

IsomorphismSimplifiedFpGroup.



Composition

Homomorphisms can be composed by product 
(left-to-right) or CompositionMapping, and may 
have an InverseGeneralMapping. GAP will try 
to represent the new homomorphism in a clever 
way, that might be a formal composition.
gap> g:=AtlasSubgroup("Fi22",11);;
gap> h:=AtlasSubgroup("Fi22",IsMatrixGroup,11);;
gap> hom:=GroupHomomorphismByImages(g,h,
> GeneratorsOfGroup(g),GeneratorsOfGroup(h));
[ (1,1450[…] ] -> [ <an immutable 78x78 matrix […]]
gap> hom:=GroupHomomorphismByImages(h,g,
> GeneratorsOfGroup(h), GeneratorsOfGroup(g));
CompositionMapping( [ (1,2)(3,6)) […]] ->
[ (1,1450)(2 […] ], <action isomorphism> ) )



Composition

Homomorphisms can be composed by product 
(left-to-right) or CompositionMapping, and may 
have an InverseGeneralMapping. GAP will try 
to represent the new homomorphism in a clever 
way, that might be a formal composition.
gap> g:=AtlasSubgroup("Fi22",11);;
gap> h:=AtlasSubgroup("Fi22",IsMatrixGroup,11);;
gap> hom:=GroupHomomorphismByImages(g,h,
> GeneratorsOfGroup(g),GeneratorsOfGroup(h));
[ (1,1450[…] ] -> [ <an immutable 78x78 matrix […]]
gap> hom:=GroupHomomorphismByImages(h,g,
> GeneratorsOfGroup(h), GeneratorsOfGroup(g));
CompositionMapping( [ (1,2)(3,6)) […]] ->
[ (1,1450)(2 […] ], <action isomorphism> ) )

Inverse only works for 
group automorphisms.



Composition

Homomorphisms can be composed by product 
(left-to-right) or CompositionMapping, and may 
have an InverseGeneralMapping. GAP will try 
to represent the new homomorphism in a clever 
way, that might be a formal composition.
gap> g:=AtlasSubgroup("Fi22",11);;
gap> h:=AtlasSubgroup("Fi22",IsMatrixGroup,11);;
gap> hom:=GroupHomomorphismByImages(g,h,
> GeneratorsOfGroup(g),GeneratorsOfGroup(h));
[ (1,1450[…] ] -> [ <an immutable 78x78 matrix […]]
gap> hom:=GroupHomomorphismByImages(h,g,
> GeneratorsOfGroup(h), GeneratorsOfGroup(g));
CompositionMapping( [ (1,2)(3,6)) […]] ->
[ (1,1450)(2 […] ], <action isomorphism> ) )



gap> iso:=IsomorphismPcGroup(g);;r:=Range(iso);;
gap> emb:=GroupHomomorphismByImages(s4,r,
> [(1,2,4,3),(1,4,3)],[r.1,r.2]);; #happens to work
gap> emb*InverseGeneralMapping(hom);
[ (1,2,4,3), (1,4,3) ] -> [ (3,3141)(4, […]   
gap> chi:=First(Irr(g),x->x[1]=2);;
gap> rep:=IrreducibleRepresentationsDixon(g,chi);
gap> InverseGeneralMapping(hom)*rep;
[ f1,f2,f3,f4,f5,f6,f7, […] ] ->
[ [[0,E(3)],[E(3)^2,0]], [[E(3),0],[0,E(3)^2]], […] ]
gap> conj:=InverseGeneralMapping(iso)
> *InnerAutomorphism(g,g.1)*iso;
[ f1, f2, f3, f4, f5, f6, f7, […] ] ->
[ f1*f2^2*f5*f7*f10* […] ]
gap> IsInnerAutomorphism(conj);
true
gap> conj;
^f1*f2*f5^2*f6*f7*f11^2*f12*f15*f16*f17^2



gap> iso:=IsomorphismPcGroup(g);;r:=Range(iso);;
gap> emb:=GroupHomomorphismByImages(s4,r,
> [(1,2,4,3),(1,4,3)],[r.1,r.2]);; #happens to work
gap> emb*InverseGeneralMapping(hom);
[ (1,2,4,3), (1,4,3) ] -> [ (3,3141)(4, […]   
gap> chi:=First(Irr(g),x->x[1]=2);;
gap> rep:=IrreducibleRepresentationsDixon(g,chi);
gap> InverseGeneralMapping(hom)*rep;
[ f1,f2,f3,f4,f5,f6,f7, […] ] ->
[ [[0,E(3)],[E(3)^2,0]], [[E(3),0],[0,E(3)^2]], […] ]
gap> conj:=InverseGeneralMapping(iso)
> *InnerAutomorphism(g,g.1)*iso;
[ f1, f2, f3, f4, f5, f6, f7, […] ] ->
[ f1*f2^2*f5*f7*f10* […] ]
gap> IsInnerAutomorphism(conj);
true
gap> conj;
^f1*f2*f5^2*f6*f7*f11^2*f12*f15*f16*f17^2

Really! No cheat.



gap> iso:=IsomorphismPcGroup(g);;r:=Range(iso);;
gap> emb:=GroupHomomorphismByImages(s4,r,
> [(1,2,4,3),(1,4,3)],[r.1,r.2]);; #happens to work
gap> emb*InverseGeneralMapping(hom);
[ (1,2,4,3), (1,4,3) ] -> [ (3,3141)(4, […]   
gap> chi:=First(Irr(g),x->x[1]=2);;
gap> rep:=IrreducibleRepresentationsDixon(g,chi);
gap> InverseGeneralMapping(hom)*rep;
[ f1,f2,f3,f4,f5,f6,f7, […] ] ->
[ [[0,E(3)],[E(3)^2,0]], [[E(3),0],[0,E(3)^2]], […] ]
gap> conj:=InverseGeneralMapping(iso)
> *InnerAutomorphism(g,g.1)*iso;
[ f1, f2, f3, f4, f5, f6, f7, […] ] ->
[ f1*f2^2*f5*f7*f10* […] ]
gap> IsInnerAutomorphism(conj);
true
gap> conj;
^f1*f2*f5^2*f6*f7*f11^2*f12*f15*f16*f17^2



Automorphism Groups
Bijective homomorphisms from a group to itself can 
form a group of automorphisms, one can also 
calculate the full AutomorphismGroup. 

When creating a group from homomorphisms, use 
SetIsGroupOfAutomorphismsFiniteGroup to 
ensure fast methods. 
gap> au:=AutomorphismGroup(SmallGroup(128,1234));;
<group of size 32768 with 15 generators>
gap> sub:=Subgroup(au,GeneratorsOfGroup(au){[1..14]});;
gap> Size(sub); #immediate
32768
gap> sub:=Group(GeneratorsOfGroup(au){[1..14]});;
gap> Size(sub); #notable delay
32768



Automorphism Groups
Bijective homomorphisms from a group to itself can 
form a group of automorphisms, one can also 
calculate the full AutomorphismGroup. 

When creating a group from homomorphisms, use 
SetIsGroupOfAutomorphismsFiniteGroup to 
ensure fast methods. 
gap> au:=AutomorphismGroup(SmallGroup(128,1234));;
<group of size 32768 with 15 generators>
gap> sub:=Subgroup(au,GeneratorsOfGroup(au){[1..14]});;
gap> Size(sub); #immediate
32768
gap> sub:=Group(GeneratorsOfGroup(au){[1..14]});;
gap> Size(sub); #notable delay
32768

Call 
SetIsGroupOfAutomorphismsFiniteGroup(sub,true); 
before calculation to get faster processing.



Practical Part 1
1. Form some homomorphisms to quotients and 

compare their images. 
2. A homomorphism given by a rule. 
3. Create a presentation and transfer to another 

free group. 
4. Stabilizer of a set of sets by change of perm.rep. 
5. Automorphisms induced by normalizer in Sn 
6. Outer automorphism of S6 
7. Smallest faithful permutation degree.



Searching For Homomorphisms
Operations that search for possible homom.s by 
running, up to conjugacy, through potential image 
tuples for a generating sequence: 

IsomorphismGroups: Isomorphism or fail, 
AutomorphismGroup. (Non-solvable bit) 
GQuotients: Epimorphisms list, different kernel. 
IsomorphicSubgroups: Monom., diff. images. 

AllHomomorphismClasses:Same kernels,Images 
Cost depends on search space, # of generators



Searching For Homomorphisms
Operations that search for possible homom.s by 
running, up to conjugacy, through potential image 
tuples for a generating sequence: 

IsomorphismGroups: Isomorphism or fail, 
AutomorphismGroup. (Non-solvable bit) 
GQuotients: Epimorphisms list, different kernel. 
IsomorphicSubgroups: Monom., diff. images. 

AllHomomorphismClasses:Same kernels,Images 
Cost depends on search space, # of generators

Thus cost is exponential in number of generators. Luckily 
all simple groups can be generated by two elements.



Searching For Homomorphisms
Operations that search for possible homom.s by 
running, up to conjugacy, through potential image 
tuples for a generating sequence: 

IsomorphismGroups: Isomorphism or fail, 
AutomorphismGroup. (Non-solvable bit) 
GQuotients: Epimorphisms list, different kernel. 
IsomorphicSubgroups: Monom., diff. images. 

AllHomomorphismClasses:Same kernels,Images 
Cost depends on search space, # of generators

In solvable case: Lift through elementary 
abelian layers using cohomology.



gap> f:=FreeGroup(2);;
gap> GQuotients(f,SymmetricGroup(3));
[ [f1,f2] -> [(2,3),(1,2)], [f1,f2] -> [(2,3),(1,2,3)],
  [f1,f2] -> [(1,2,3),(1,2)] ]
gap> GQuotients(f,SymmetricGroup(3) :findall:=false);
[ [ f1, f2 ] -> [ (2,3), (1,2) ] ]

gap> IsomorphicSubgroups(Alternat.Gp.(6),Alternat.Gp.(5));
[ [(1,5,3,2,4),(1,5)(2,4)] -> [(2,3,6,5,4),(1,2)(3,4)],
  [(1,5,3,2,4),(1,5)(2,4)] -> [(1,2,3,4,5),(1,2)(3,4)] ]

gap> AllHomomorphismClasses(DihedralGroup(6),
> DihedralGroup(12));
[ [f1,f2] -> [<identity>,<identity>],
  [f1,f2] -> [f1,<identity>],  [f1,f2] -> [f1,f3],
  [f1,f2] -> [f1*f2,<identity>],  [f1,f2] -> [f1*f2,f3],
  [f1,f2] -> [f2*f3,<identity>] ]
gap> Length(AllHomomorphismClasses(DihedralGroup(12),
> DihedralGroup(6)));
5



Further Quotient Algorithms
Quotient algorithms also are a main tool in finding 
certain quotients of finitely presented groups. They 
work by describing a "generic image" and then use 
linear algebra to impose constraints: 
MaximalAbelianQuotient(also for other groups), 
EpimorphismPGroup, 
EpimorphismSolvableGroup.

gap> f:=FibonacciGroup(8);; 
gap> MaximalAbelianQuotient(f); #image 3 x 3 x 5 
[ f1,f2,f3,f4,f5,f6,f7,f8 ] -> [ f1*f2*f3^4,[…]
gap> Size(Image(EpimorphismPGroup(f,3,5)));
6561
gap> Size(Image(EpimorphismSolvableQuotient(f,2^5*3^5*5)));
38880



Pre-Image Subgroups
Subgroups of finitely presented groups are 
represented as pre-image of a group under a 
homomorphism (e.g. point stabilizer in action on 
cosets). Represent huge index without a coset table. 
Calculations with subgroups work with the direct 
product of the homomorphisms.
gap> f:=FreeGroup("a","b");;
gap> rels:=ParseRelators(f,"a2,b3,(abababaBaBabaBaB)2");
gap> g:=f/rels;;
gap> l:=Intersection(LowIndexSubgroups(g,20));;
gap> Index(g,l);
3317760
gap> def:=DefiningQuotientHomomorphism(l);
[ a, b ] -> [ (3,4)(5,6)(7,8)(10,11) […]



gap> f:=FreeGroup("x","y","z");;
gap> g:=f/ParseRelators(f,
  "x,y3,z2,(xyxyxyxYxYxyxYxY)2,(yz)2,(xz)2");;
gap> l:=LowIndexSubgroupsFpGroup(g,20);;Length(l);
133
gap> k:=Intersection(l);; #index 6635520, normal
gap> q:=DefiningQuotientHomomorphism(k);;p:=Image(q);;
gap> m:=ShallowCopy(LowLayerSubgroups(p,2));;
gap> SortBy(m,x->Index(p,x));
gap> sub:=First(m,x->AbelianInvariants(x)
>        <>AbelianInvariants(PreImage(q,x)));
gap> Index(p,sub);
16
gap> AbelianInvariants(sub);
[ 2, 2 ]
gap> AbelianInvariants(PreImage(q,sub));
[ 2, 4 ]
gap> new:=LargerQuotientBySubgroupAbelianization(q,sub);;
gap> k2:=Intersection(k,new);;
gap> q2:=DefiningQuotientHomomorphism(k);;p2:=Image(q2);;
gap> Size(p2); #larger by factor 2
46006272



Nice Monomorphisms
For some classes of groups: (e.g. matrix (still...), 
automorphisms, ...) GAP performs all calculations 
though image under a NiceMonomophism (that 
typically is given by an action or function). 
Trigger: IsHandledByNiceMonomorphism. 
Can use for own objects, the default method for 
NiceMonomorphism is the right regular action.

gap> g:=GL(4,7);; IsHandledByNiceMonomorphism(g);
true
gap> SylowSubgroup(g,2);
<matrix group of size 2048 with 3 generators>
gap> NiceMonomorphism(g); #on 7^4-1 vectors
<action isomorphism>
gap> NrMovedPoints(Range(NiceMonomorphism(g)));
2400



Group Products
When forming new groups as products, GAP might 
use homomorphisms to specify the product. It will 
represent the product in a "suitable" way, and will 
provide homomorphisms to allow for 
decomposition as product: Embedding(prd,nr) 
and Projection(prd,nr).
gap> g:=AlternatingGroup(5);h:=SmallGroup(24,12);
Alt( [ 1 .. 5 ] )
<pc group of size 24 with 4 generators>
gap> dir:=DirectProduct(g,h);;
gap> MappingGeneratorsImages(Embedding(dir,1));
[ [ (1,2,3,4,5), (3,4,5) ],
  [ DirectProductElement( [ (1,2,3,4,5), <id> ] ),
    DirectProductElement( [ (3,4,5), <id> of ... ] ) ] ]
,5), <identity> of ... ] )



gap> dir:=DirectProduct(g,Group((1,2,3,4),(1,2)));
Group([ (1,2,3,4,5), (3,4,5), (6,7,8,9), (6,7) ])
gap> a:=Image(Embedding(dir,1),(1,2,3))
>         *Image(Embedding(dir,2),(1,2)(3,4));
(1,2,3)(6,7)(8,9)
gap> Image(Projection(dir,1),a);
(1,2,3)
gap> Image(Projection(dir,2),a);
(1,2)(3,4)



Semidirect Products
A SemidirectProduct C⋉N is specified by 
constructing a homomorphism from C to a group 
of automorphisms of N. 
Again, Embedding maps into the product, there is 
only Projection(prd). 

The same holds for WreathProduct.
gap> C:=AbelianGroup([2]);;N:=AbelianGroup([3]);;
gap> aut:=GroupHomomorphismByImages(N,N,[N.1],[N.1^-1]);
[ f1 ] -> [ f1^2 ]
gap> map:=GroupHom[…]ByImages(C,Group(aut),[C.1],[aut]);;
gap> sdp:=SemidirectProduct(C,map,N);
<pc group of size 6 with 2 generators>
gap> IsomorphismGroups(sdp,SymmetricGroup(3));
[ f1, f2 ] -> [ (2,3), (1,2,3) ]



Practical Part 2

8. Construct an (external) semidirect product.  
9. Decompose a group formally as (internal) 

semidirect product. 
10. Quotients of a particular isomorphism type - 

generating direct products. 
11. Forming larger and larger quotients of finitely 

presented groups. 
12. Constructing and inducing representations.





Template

gap> LoadPackage(“matgrp”); #use recog
   […]
gap> g:=AtlasSubgroup("Co1",IsMatrixGroup,3); #211.M24
<matrix group of size 501397585920 with 2 generators>
gap> FittingFreeLiftSetup(g); #2 seconds
rec( depths:=[ 1, 12 ],
  factorhom:=[ [<immutable 24x24 matrix GF2>, […] ]] ->
    [ (1,11[…]],
Last line



Too Clever By Half

Use different tool



Permgroup acting linearly 
Niceo (transfer conj classes?) 
IsomorphismSpecialPcGroup


