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1. A cap of a projective space is a set O of points such that no three points of O are collinear.
(a) Initialize PG(3,q), ¢ =T.
(b) Check that an elliptic quadric Q~(3,7) is indeed a cap of PG(3,7).

Useful commands: PG, E1lipticQuadric, List, Points, Lines, Number.
solution file: cappg3q.gq.

2. Consider the projective space PG(3, ¢), ¢ = 5, and its group of projectivities G = PGL(4, 5).
Compute a random element g of G of order ¢* + ¢ + 1.
(a) Compute the orbits of the ponts of PG(3, ¢) under the group (g).
(b) Check that most of these orbits span the complete space PG(3, q).

(c) Choose one of these orbits that span the full space, and compute the intersection num-
bers of this orbit with the lines of PG(3, q).

(d) Repeat the same steps for ¢ = 9 and g = 17.

(e) Could you make a guess about the set of points of such an orbit?

Useful commands: ProjectivityGroup, Order, First, FiningOrbits, Span, Number.
solution file: cappg3qg.g.

3. Consider the classical polar space H(5, ¢*) (the Hermitian variety). This is a rank 3-geometry,
it contains points, lines and planes. A spread of H(5, ¢?) is a set S of planes of H(5, ¢*) such
that every point of H(5, ¢%) is contained in exactly one plane of S. A partial spread is a set S of
planes of H(5, ¢*) such that every point of H(5, ¢*) is contained in at most one plane of S. A
partial spread is maximal if it cannot be extend to a larger partial spread.

(a) Initialize the classical polar space H(5, ¢?), ¢ = 2.

(b) Initialize a graph (using the package grape) I', with vertex set the set of planes of
H(5,4¢?%), and two vertices being adjacent if and only if they meet trivially. Note that
grape allows to construct graphs using non-trivial symmetry groups.

(c) Find all maximal partial spreads of H(5, ¢*). Use the grape command CompleteSubgraphs.
(d) Refine your search now by checking the sizes of the found subgraphs, and recomputing,
up to isomorphism, all subgraphs of a given size.

Useful commands: HermtianPolarSpace,Planes,Meet,CollineationGroup, OnProjSubspaces,
grape package: CompleteSubgraphs CompleteSubgraphsOfGivenSize.
solution file: mpsh5g2.g.



4. Consider the point line geometry of points and lines of the parabolic quadric Q(4, ¢). This is
a classical generalized quadrangle. A partial ovoid is a set S of points such that every line of
Q(4, ¢) meets S in at most one point. It is an ovoid if every line meets S in exactly one point.
By combinatorial arguments, an ovoid has size exactly ¢* + 1. A partial ovoid is maximal if it
cannot be extended to a larger partial ovoid.

(a) Initialize the parabolic quadric Q(4, ¢), ¢ = 5.

(b) Initialize a graph (using the package grape) I, with vertex set the set of points of Q(4, q),
and two vertices being adjacent if and only if they are not collinear as points of Q(4, ¢).
Note that grape allows to construct graphs using non-trivial symmetry groups.

(c) Show that, up to isomorphism, there is only one ovoid of Q(4,5), and it is an elliptic
quadric Q™ (3, ¢). Note that this isomorphism check can be done using the grape com-
mand(s) in an appropriate way.

(d) Find the largest maximal partial ovoid of Q(4, 5). Check that it is unique up to isomor-
phism. Show that the lines not containing a point of this maximal partial ovoid, lie in a
hyperplane of PG(4, q), necessarily meeting Q(4, ¢) in a hyperbolic quadric Q7 (3, ¢).

Useful commands: ParabolicQuadric,Points,IsCollinear,CollineationGroup, OnProjSubspaces,
AmbientGeometry,grapepackage:CompleteSubgraphsOfGivenSize,VertexNames,Span
solution file: mpog4q.g.

5. The Klein correspondence, mapping lines of PG(3, ¢) to points of Q" (5, ¢) is quite powerful.
Here you will combine this geometry morphism with field reduction to describe a spread of a
symplectic space.

(a) Define ¢ = 9. Initialize PG(1, ¢?) and store all its points in a list.

(b) Initialize the geometry morphism based on field reduction, mapping points of PG(1, ¢)
to lines of PG(3, ¢).

(c) Use this geometry morphism to construct a spread of PG(3,¢). Check that the set of
lines you get is indeed a spread of PG(3, q).

(d) Now initialize and use the Klein correspondence to convert the line spread of PG(3, q)
into a set of points of the hyperbolic quadric Q* (5, ¢). Note that the representation of
Q" (5, g) is not important.

(e) Show that the point set of QT (5, ¢) spans a solid S of PG(5, ¢), meeting Q™ (5,¢) in a
hyperbolic quadric Q* (3, ¢).

(f) This means that every hyperplane 7 containing S meets Q7 (5, ¢) in a parabolic quadric.
Choose any hyperplane 7 and embed that standard parabolic quadric Q(4, ¢) as hy-
perplane section in Q*(5,¢). Then compute the preimage of the point set under this
embedding.

(g) Now use that natural duality between Q(4, ¢) and W(3, ¢) to obtain the line spread of
PG(3, g) as a line spread of W(3, ¢), the symplectic generalized quadrangle.

Useful commands: NaturalEmbeddingByFieldReduction, KleinCorrespondence, Range, AmbientGeometry,
ProjectiveDimension, Span,

ElementsIncidentWithElementOfIncidenceStructure,

NaturalEmbeddingBySubspace, SymplecticSpace, NaturalDuality

solution file: symplectic.g



6. We will consider in PG(3,q), ¢ = 2%¢*!, a point set of which the coordinates are given as
follows.
O={(1,st+s"T2+17,5,t):stcF,}U{(0,1,0,0)}.
(a) Initalize PG(3,q), with ¢ = 8.
(b) Use the above list of coordinates to create the set of points O in PG(3, 8).
(c) Check that itis a cap.
(d) Check that every point p € O defines a unique tangent plane, i.e. a plane meeting O only
in p.
(e) Create a list with all tangent planes.

(f) Compute the setwise stabilizer group S of O in the group of special homographies of
PG(3, ¢). Compute the order of the group.

(g) Check which finite simple group you found by computing S.

Useful commands: PG, VectorSpaceToElement, Lines, Planes,
SpecialHomographyGroup, FiningSetwiseStabiliser, Order, StructureDescription.
solution file: titspg3q.g. The object described here is the famous ovoid of Jacques Tits.

7. We will consider an ovoid in a classical generalized quadrangle. The classical generalized
quadrangle will be the point-line geometry on the parabolic quadric Q(4, g), ¢ = p", p an odd
prime, h > 1.

(@) Let g = 9. Initialize the parabolic quadric Q(4, ¢) with equation X3 + X¢ X, + X3X; = 0.

(b) Denote ¢ the unique non-trivial automorphism of Fg. Let —k be a non-square in [Fy.
Define on Q(4, ¢) the point set with coordinates given as follows

O ={(1,s,t,ks”, —t* —ks"t) :5,t € F,} U{(0,0,0,0,1)}

(c) Check that O is an ovoid of Q(4,q), i.e. a set of points such that every line of Q(4, ¢)
meets O in exactly one point.

(d) Check that every elliptic quadric contained in Q(4, ¢) meets O in 1 mod p points.
(e) Compute the stabilizer group of O in the special isometry group of Q(4, g).

Useful commands: QuadraticFormByMatrix (forms package) PolarSpace, AmbientSpace, Hyperplanes,
SpeciallsometryGroup, FiningSetwiseStabiliser.

solution file: kantor.g. The ovoid is an example of non-classical ovoids of Q(4,9), i.e. an ovoid

different from and elliptic quadric (and hence necessarily spanning PG(4, q)).

8. Combine exercises 5 and 6. A famous theorem states that any ovoid O of PG(3, ¢), ¢ even, de-
fines a symplectic generalized quadrangle S as follows. The points are the points of PG(3, ¢),
and the lines are the lines of PG(3, ¢) tangent to O. Starting from a given ovoid O, one can
in principle compute the form. In this exercise, we will reconstruct the symplectic space
around the ovoid geometrically using the Klein correspondence. Then we will use the natu-
ral duality of W(3, ¢) with itself and the geometry isomorphism between symplectic spaces
described by different symplectic forms to investigate the two different spreads we get.

(a) Construct the ovoid O of exercise (4) in PG(3, 8).
(b) Compute the lines and planes of PG(3, 8) tangent to O.



(c) Map these tangent lines, respectively planes to points, respectively lines of Q™ (5, ¢)
using the Klein correspondence.

(d) Check that this set of points (and lines) on Q™ (5, ¢) spans a hyperplane of PG(5, q).

(e) So these points and lines are the points and lines of an embedded parabolic quadric
Q(4, ¢), embed Q(4, q) into ¢ (5, ¢) as subspace intersection of Q" (5, q).

(f) No use the natural duality between Q(4, ¢) and W(3, ¢) to convert this particular set of
lines of Q(4, ¢) to a set of points of W(3, ¢). Now check that the obtained point set of
W(3, ¢) is indeed an ovoid.

Useful commands: NaturalEmbeddingBySubspace, NaturalDuality,
KleinCorrespondeceExtended.
solution file: combination.g

9. The André-Bruck-Bose representation (ABB) is a representation of translation planes. Let S
be any spread of PG(3, g), i.e. a set of lines partitioning the point set. Embed PG(3,¢) as a
hyperplane 7 in PG(4, ¢). Now define

e Points: points of type (i): the points of PG(4, ¢) \ 7; points of type (ii): the lines of .S;

e Lines: lines of type (a): the planes of PG(4, ¢) meeting 7 in a line of S; line of type (b):
the hyperplane 7

e Incidence between Points and Lines is the natural incidence.

(a) Construct (see exercise (5)) a Desarguesian spread of PG(3, ¢).

(b) Turn this spread into a non-Desarguesian spread by swapping a regulus. A regulus is
determined by three lines I1, l2, I3 as follows. for each point p € [;, there is a unique line
m,, meeting Iy, l2, [3 in precisely a point. So the three lines I1, I3, I3 determine ¢ + 1 lines
m; :i=1...q+ 1. This is the opposite regulus R’. The regulus determined by the lines
l1,12,13 is precisely the opposite regulus determined by any three lines of R’. Clearly,
replacing the lines of R by R’ yields again a spread of PG(3, ¢). Now define the spread
S:=(S\R)UR'.

(c) Define the points and lines from the ABB representation with relation to the spread 5’

(d) The incidence is the natural incidence.

(e) Look at the command GeneralisedPolygonByElements, youneed the compute the
stabilizer group of the spread S’, and the incidence as an argument for this command is
\%.

(f) The command CollineationGroup is applicable on the generalised polygon you got
in (e). However, it will take a lot of time to compute it. If the package digraph is
available, you can (i) compute the incidence graph using IncidenceGraph, (ii) con-
vert this grape object into a digraph object simply by applying Digraph on it, (iii) now
computing the digraph-automorphism group using Aut omorphismGroup. Compare
the result with the stabilizer group of the non-Desarguesian spread. What is the math-
ematical conclusion?

solution file: hall_plane.g.



