

Abstract category
theory

Abstract category Concrete computations
theory in computer algebra

“natural transformation”

Abstract category : Concrete computations
theory in computer algebra

“natural transformation”

Abstract category : Concrete computations
theory in computer algebra

Categorical abstraction

“natural transformation”

Abstract category : Concrete computations
theory in computer algebra

Categorical abstraction is a powerful

“natural transformation”

Abstract category : Concrete computations
theory in computer algebra

Categorical abstraction is a powerful organizing principle

“natural transformation”

Abstract category : Concrete computations
theory in computer algebra

Categorical abstraction is a powerful organizing principle and
computational tool.

Category theory in computer algebra

Sebastian Posur

November 20, 2018

A

C P

2/44

Categorical abstraction is a powerful organizing principle and
computational tool.

o What is categorical abstraction?

Categorical abstraction is a powerful organizing principle and
computational tool.

o What is categorical abstraction?

9 How can it be used as an organizing priniciple?

Categorical abstraction is a powerful organizing principle and
computational tool.

o What is categorical abstraction?
9 How can it be used as an organizing priniciple?

e Why is it a computational tool?

Categorical abstraction is a powerful organizing principle and
computational tool.

o What is categorical abstraction?

Categories

A category A consists of the following data:

Categories

A category A consists of the following data:
@ Objects: a class Obj 4

Categories

A category A consists of the following data:
@ Objects: a class Obj 4

@ Morphisms: a family of sets Hom 4(A, B), where A, B € Obj 4

Categories

A category A consists of the following data:
@ Objects: a class Obj 4

@ Morphisms: a family of sets Hom 4(A, B), where A, B € Obj 4

A—B C

Categories

A category A consists of the following data:
@ Objects: a class Obj 4

@ Morphisms: a family of sets Hom 4(A, B), where A, B € Obj 4

Categories

A category A consists of the following data:
@ Objects: a class Obj 4
@ Morphisms: a family of sets Hom 4(A, B), where A, B € Obj 4

@ Composition: for A, B, C € Obj 4, a function
o: Homy(B, C) x Hom4(A, B) — Hom4(A, C) (assoc.)

Categories

A category A consists of the following data:
@ Objects: a class Obj 4
@ Morphisms: a family of sets Hom 4(A, B), where A, B € Obj 4

@ Composition: for A, B, C € Obj 4, a function
o: Homy(B, C) x Hom4(A, B) — Hom4(A, C) (assoc.)

Categories

A category A consists of the following data:
@ Objects: a class Obj 4
@ Morphisms: a family of sets Hom 4(A, B), where A, B € Obj 4
@ Composition: for A, B, C € Obj 4, a function
o: Homy(B, C) x Hom4(A, B) — Hom4(A, C) (assoc.)
@ Neutral elements: idy € Hom4(A, A) (neutral w.r.t. composition)

v

Categories

A category A consists of the following data:
@ Objects: a class Obj 4
@ Morphisms: a family of sets Hom 4(A, B), where A, B € Obj 4
@ Composition: for A, B, C € Obj 4, a function
o: Homy(B, C) x Hom4(A, B) — Hom4(A, C) (assoc.)
@ Neutral elements: idy € Hom4(A, A) (neutral w.r.t. composition)

v

Boa

Categories

A category A consists of the following data:
@ Objects: a class Obj 4
@ Morphisms: a family of sets Hom 4(A, B), where A, B € Obj 4
@ Composition: for A, B, C € Obj 4, a function
o: Homy(B, C) x Hom4(A, B) — Hom4(A, C) (assoc.)
@ Neutral elements: idy € Hom4(A, A) (neutral w.r.t. composition)

v

Boa

Isomorphisms

Isomorphisms

Isomorphisms

Isomorphisms

«

idA:ﬁOaCA BQaOﬁZidB

B

Isomorphisms

«

idA:ﬁoaCA Banﬁ:idB

B

@ A and B are isomorphic.

Isomorphisms

«

idA:ﬁoaCA Banﬁ:idB

B

@ A and B are isomorphic.
@ Notation: A= Bor A~ B.

Isomorphisms

«

idA:ﬁoaCA BQaOB:idB

B

@ A and B are isomorphic.
@ Notation: A= Bor A~ B.
@ «is an isomorphism with inverse 5.

Isomorphisms

«

idA:ﬁoaCA BQaOB:idB

B

@ A and B are isomorphic.

@ Notation: A= Bor A~ B.

@ «is an isomorphism with inverse 5.
@ [is an isomorphism with inverse «.

Isomorphisms

«

idA:ﬁoaCA BQaOB:idB

B

@ A and B are isomorphic.

@ Notation: A= Bor A~ B.

@ «is an isomorphism with inverse 5.
@ [is an isomorphism with inverse «.

Probably the most important notion in category theory.

Example: Sets

Sets

Example: Sets

Sets

@ Objg,,, := {all sets}

Example: Sets

Sets

@ Objg,,, := {all sets}

@ Homge(M, N) := {maps from M to N'}

Example: Sets

Sets

@ Objg,,, := {all sets}
@ Homge(M, N) := {maps from M to N'}

@ o given by composition of maps

Example: Sets

Sets

@ Objg,,, := {all sets}
@ Homge(M, N) := {maps from M to N'}

@ o given by composition of maps

eidy:M—M:m—m

Example: Sets

Sets

@ Objg,,, := {all sets}
@ Homge(M, N) := {maps from M to N'}

@ o given by composition of maps

eidy:M—M:m—m

isomorphisms

Example: Sets

Sets

@ Objg,,, := {all sets}
@ Homge(M, N) := {maps from M to N'}

@ o given by composition of maps

eidy:M—M:m—m

isomorphisms = bijections

Example: Relations

Rels

Example: Relations

Rels

@ Objg, := {all sets}

Example: Relations

Rels

@ Objg, := {all sets}

@ Homges(M, N) := {relations from M to N, i.e., subsets of M x N}

Example: Relations

Rels

@ Objg, := {all sets}
@ Homges(M, N) := {relations from M to N, i.e., subsets of M x N}

@ o given by composition of relations

Example: Relations

Rels

@ Objg, := {all sets}
@ Homges(M, N) := {relations from Mto N, i.e., subsets of M x N}

@ o given by composition of relations

fCAxB gCBxC

Example: Relations

Rels

@ Objg, := {all sets}
@ Homges(M, N) := {relations from Mto N, i.e., subsets of M x N}

@ o given by composition of relations

gof:={(ac)cAxC|3beB:(ab)cf(bc)ecg}

TN

A B C
fCAxB gCBxC

Example: Relations

Rels

@ Objg, := {all sets}
@ Homges(M, N) := {relations from Mto N, i.e., subsets of M x N}

@ o given by composition of relations

@ idy :={(mm)|meM} cMxM

gof:={(ac)cAxC|3beB:(ab)cf(bc)ecg}

TN

A B C
fCAxB gCBxC

Example: Groups as categories

Let G be a group.

Example: Groups as categories

Let G be a group.

@ Objg := {*} (any singleton)

Example: Groups as categories

Let G be a group.

@ Objg := {*} (any singleton)

@ Homg(x,x) := G

Example: Groups as categories

Let G be a group.

@ Objg := {*} (any singleton)
@ Homg(x, %) := G

@ o given by group multiplication

Example: Groups as categories

Let G be a group.

@ Objg := {*} (any singleton)
@ Homg(x, %) := G

@ o given by group multiplication

@ id, := identity elementin G

Example: Groups as categories

Let G be a group.

@ Objg := {*} (any singleton)
@ Homg(x, %) := G

@ o given by group multiplication

@ id, := identity elementin G

isomorphisms

Example: Groups as categories

Let G be a group.

@ Objg := {*} (any singleton)
@ Homg(x, %) := G

@ o given by group multiplication

@ id, := identity elementin G

isomorphisms = all elements in G

Example: Finite dimensional vector spaces

vecQ

10/44

Example: Finite dimensional vector spaces

vecQ

@ Obj,, = {all finite dimensional Q-vector spaces}

10/44

Example: Finite dimensional vector spaces

vecQ

@ Obj,, = {all finite dimensional Q-vector spaces}

@ Homyec, (V, W) := {Q—Iinear maps from V to W}

10/44

Example: Finite dimensional vector spaces

vecQ

@ Obj,, = {all finite dimensional Q-vector spaces}
@ Homyec, (V, W) := {Q—Iinear maps from V to W}

@ o given by composition of maps

10/44

Example: Finite dimensional vector spaces

vecQ

@ Obj,, = {all finite dimensional Q-vector spaces}
@ Homyec, (V, W) := {Q—Iinear maps from V to W}

@ o given by composition of maps

eidy:M—M:m—m

10/44

Example: Finite dimensional vector spaces

vecQ

@ Obj,, = {all finite dimensional Q-vector spaces}
@ Homyec, (V, W) := {Q—Iinear maps from V to W}

@ o given by composition of maps

eidy:M—M:m—m

isomorphisms

10/44

Example: Finite dimensional vector spaces

vecQ

@ Obj,, = {all finite dimensional Q-vector spaces}
@ Homyec, (V, W) := {Q—Iinear maps from V to W}

@ o given by composition of maps

eidy:M—M:m—m

isomorphisms = Q-linear bijections

10/44

Example: Matrices

matg

11/44

Example: Matrices

matg

° ObjmatQ = Np

11/44

Example: Matrices

matg

° Objmat@ = Np

@ HoMyee, (M, n) := Q"

11/44

Example: Matrices

matg

° Objmat@ = Np
@ HoMyee, (M, n) := Q"

@ AocB:=B-A

11/44

Example: Matrices

matg

® Objyy, = No
@ HoMyee, (M, n) := Q"

@ AocB:=B-A

@ id;, : the m x midentity matrix

11/44

Example: Matrices

matg

® Objyy, = No
@ HoMyee, (M, n) := Q"

@ AocB:=B-A

@ id;, : the m x midentity matrix

isomorphisms

11/44

Example: Matrices

matg

® Objyy, = No
@ HoMyee, (M, n) := Q"

@ AocB:=B-A

@ id;, : the m x midentity matrix

isomorphisms = invertible matrices

11/44

Equivalences

When are two categories “the same” in a categorical way?

12/44

Equivalences

When are two categories “the same” in a categorical way?

A B

12/44

Equivalences

When are two categories “the same” in a categorical way?

A B

@ F:Obj, —> Objs

12/44

Equivalences

When are two categories “the same” in a categorical way?

A F B

@ F:Obj, —> Objs

12/44

Equivalences

When are two categories “the same” in a categorical way?

A F B

@ F:Obj, —> Objs

12/44

Equivalences

When are two categories “the same” in a categorical way?

A F B

@ F:Obj, —> Objs

12/44

Equivalences

When are two categories “the same” in a categorical way?

A F B

@ F:Obj, —> Objs

@ Hom 4(A, A") — Homg(FA, FA)

12/44

Equivalences

When are two categories “the same” in a categorical way?

A F B

|

A/

@ F:Obj, —> Objs

@ Hom 4(A, A") — Homg(FA, FA)

12/44

Equivalences

When are two categories “the same” in a categorical way?

F
A B
A FA
o J/ — J/ Fo
A FA

@ F:Obj, —> Objs

@ Hom 4(A, A") — Homg(FA, FA)

12/44

Equivalences

When are two categories “the same” in a categorical way?

F
A B
A FA
o J/ — J/ Fo
A FA

@ F:Obj, —> Objs

@ Hom (A, A') — Hompg(FA, FA') (respects id and o, bijection)

12/44

Equivalences

When are two categories “the same” in a categorical way?

F
A B
A FA
o J/ — J/ Fo
A FA

@ F:Obj, — Objy
@ Hom (A, A') — Hompg(FA, FA') (respects id and o, bijection)

e vVBeB

12/44

Equivalences

When are two categories “the same” in a categorical way?

A F B

@ F:Obj, — Objy
@ Hom (A, A') — Hompg(FA, FA') (respects id and o, bijection)

e vVBeB

12/44

Equivalences

When are two categories “the same” in a categorical way?

A F B

@ F:Obj, — Objy
@ Hom (A, A') — Hompg(FA, FA') (respects id and o, bijection)

e vVBeB

12/44

Equivalences

When are two categories “the same” in a categorical way?

A F B

@ F:Obj, — Objy
@ Hom (A, A') — Hompg(FA, FA') (respects id and o, bijection)

evVBeB dAcA:

12/44

Equivalences

When are two categories “the same” in a categorical way?

A F B

@ F:Obj, — Objy
@ Hom (A, A') — Hompg(FA, FA') (respects id and o, bijection)

evVBeB dAcA:

12/44

Equivalences

When are two categories “the same” in a categorical way?

F

A B
FA

—
A B

@ F:Obj, — Objy
@ Hom (A, A') — Hompg(FA, FA') (respects id and o, bijection)

evVBeB dAcA:

12/44

Equivalences

When are two categories “the same” in a categorical way?

F

A B
FA

— 2

A B

@ F:Obj, — Objy
@ Hom (A, A') — Hompg(FA, FA') (respects id and o, bijection)

evVBeB dAcA:

12/44

Equivalences

When are two categories “the same” in a categorical way?

F
A B
FA
— 2
A B

@ F:Obj, — Objy
@ Hom (A, A') — Hompg(FA, FA') (respects id and o, bijection)

evVBeB dAcA: FA~ B

12/44

Equivalences

When are two categories “the same” in a categorical way?

F
A B
FA
— 2
A B

@ F:Obj, — Objy
@ Hom (A, A') — Hompg(FA, FA') (respects id and o, bijection)

evVBeB dJAeA: FA~B (essentially surjective)

12/44

Equivalences

Let's compare matg and vecg.

13/44

Equivalences

Let's compare matg and vecg.

matQ vecqQ

13/44

Equivalences

Let's compare matg and vecg.

matQ vecqQ

e F: Obj e, — Objyecy,

13/44

Equivalences

Let's compare matg and vecg.

F

matQ vecqQ

e F: Obj e, — Objyecy,

13/44

Equivalences

Let's compare matg and vecg.

F

matQ vecqQ

e F: Obj e, — Objyecy,

13/44

Equivalences

Let's compare matg and vecg.

F

matQ vecqQ

m — Q1><m

e F: Obj e, — Objyecy,

13/44

Equivalences

Let's compare matg and vecg.

F

matQ vecqQ

m — Q1><m

e F: Obj e, — Objyecy,

[*) Hommat(@(m, n) — HomveC@(Q1 Xma Q1 Xn)

13/44

Equivalences

Let's compare matg and vecg.

F

matQ vecqQ

(ay) ,-,-T

e F: Obj e, — Objyecy,

[*) Hommat(@(m, n) — HomveC@(Q1 Xma Q1 Xn)

13/44

Equivalences

Let's compare matg and vecg.

matQ F VCCQ

m Q‘I xm
O N A

n @1 xn

e F: Obj e, — Objyecy,

[*) Hommat(@(m, n) — HomveC@(Q1 Xma Q1 Xn)

13/44

Equivalences

Let's compare matg and vecg.

matQ F VCCQ

m Q‘I xm
O N A

n @1 xn

e F: Obj e, — Objyecy,

® HoMpu, (M, n) — Homyee, (QT™, QM) (respects id and o)

13/44

Equivalences

Let's compare matg and vecg.

matQ F VCCQ

m Q‘I xm
O N A

n @1 xn

e F: Obj e, — Objyecy,
® HoMpu, (M, n) — Homyee, (QT™, QM) (respects id and o)

@ VB € vecg

13/44

Equivalences

Let's compare matg and vecg.

F

matQ vecqQ

e F: Obj e, — Objyecy,
® HoMpu, (M, n) — Homyee, (QT™, QM) (respects id and o)

@ VB € vecg

13/44

Equivalences

Let's compare matg and vecg.

F

matQ vecqQ

e F: Obj e, — Objyecy,
® HoMpu, (M, n) — Homyee, (QT™, QM) (respects id and o)

@ VB € vecg

13/44

Equivalences

Let's compare matg and vecg.

F

matQ vecqQ

e F: Obj e, — Objyecy,
® HoMpu, (M, n) — Homyee, (QT™, QM) (respects id and o)

@ VBcvecg dmeE matg:

13/44

Equivalences

Let's compare matg and vecg.

F

matQ vecqQ

e F: Obj e, — Objyecy,
® HoMpu, (M, n) — Homyee, (QT™, QM) (respects id and o)

@ VBcvecg dmeE matg:

13/44

Equivalences

Let's compare matg and vecg.

matg F vecq
Q1 xm
—
m B

e F: Obj e, — Objyecy,
® HoMpu, (M, n) — Homyee, (QT™, QM) (respects id and o)

@ VBcvecg dmeE matg:

13/44

Equivalences

Let's compare matg and vecg.

matg F vecq
Q1 xm
— 2
m B

e F: Obj e, — Objyecy,
® HoMpu, (M, n) — Homyee, (QT™, QM) (respects id and o)

@ VBcvecg dmeE matg:

13/44

Equivalences

Let's compare matg and vecg.

matg F vecq
Q1 xm
— 2
m B

e F: Obj e, — Objyecy,
® HoMpu, (M, n) — Homyee, (QT™, QM) (respects id and o)

@ VBevecg Imematg: Q*"~B

13/44

Equivalences

Let's compare matg and vecg.

matg F vecq
Q1 xXm
— 2
m B

e F: Obj e, — Objyecy,
® HoMpu, (M, n) — Homyee, (QT™, QM) (respects id and o)

@ VBecvecg Imematg: Q"~B m=dim(B)

13/44

Categorical abstraction

matg =~ vecq

14/44

Categorical abstraction

matg =~ vecq

For a category theorist, these two categories look the same.

14/44

Categorical abstraction

15/44

Categorical abstraction

Q: What is a finite dimensional Q-vector space?

15/44

Categorical abstraction

Q: What is a finite dimensional Q-vector space?
A: An object in the category of finite dim. Q-vector spaces.

15/44

Categorical abstraction

Q: What is a finite dimensional Q-vector space?
A: An object in the category of finite dim. Q-vector spaces.
Q: What is the category of finite dimensional Q-vector spaces?

15/44

Categorical abstraction

Q: What is a finite dimensional Q-vector space?
A: An object in the category of finite dim. Q-vector spaces.
Q: What is the category of finite dimensional Q-vector spaces?

matg =~ vecq

15/44

Categorical abstraction

Q: What is a finite dimensional Q-vector space?
A: An object in the category of finite dim. Q-vector spaces.
Q: What is the category of finite dimensional Q-vector spaces?

matg =~ vecq

matg is a computerfriendly model of vecg.

15/44

Categorical abstraction

Q: What is a finite dimensional Q-vector space?
A: An object in the category of finite dim. Q-vector spaces.
Q: What is the category of finite dimensional Q-vector spaces?

matg =~ vecq
matg is a computerfriendly model of vecg.

We want to use categories to model computational contexts instead
of “isolated” objects.

15/44

Categorical abstraction is a powerful organizing principle and
computational tool.

9 How can it be used as an organizing priniciple?

16/44

Computable categories

17/44

Computable categories

A category becomes computable through

17/44

Computable categories

A category becomes computable through
@ Data structures for objects and morphisms

17/44

Computable categories

A category becomes computable through
@ Data structures for objects and morphisms
@ Algorithms to compute the composition of morphisms

17/44

Computable categories

A category becomes computable through
@ Data structures for objects and morphisms

@ Algorithms to compute the composition of morphisms and identity
morphisms of objects

17/44

Computable categories

A category becomes computable through
@ Data structures for objects and morphisms

@ Algorithms to compute the composition of morphisms and identity
morphisms of objects

17/44

Computable categories

A category becomes computable through
@ Data structures for objects and morphisms

@ Algorithms to compute the composition of morphisms and identity
morphisms of objects

matg

17/44

Computable categories

A category becomes computable through
@ Data structures for objects and morphisms

@ Algorithms to compute the composition of morphisms and identity
morphisms of objects

matg

17/44

Computable categories

A category becomes computable through
@ Data structures for objects and morphisms

@ Algorithms to compute the composition of morphisms and identity
morphisms of objects

matg

17/44

Computable categories

A category becomes computable through
@ Data structures for objects and morphisms

@ Algorithms to compute the composition of morphisms and identity
morphisms of objects

matg

17/44

Computable categories

A category becomes computable through
@ Data structures for objects and morphisms

@ Algorithms to compute the composition of morphisms and identity
morphisms of objects

matg

17/44

Computable categories

A category becomes computable through
@ Data structures for objects and morphisms

@ Algorithms to compute the composition of morphisms and identity
morphisms of objects

matg

17/44

Computable categories

A category becomes computable through
@ Data structures for objects and morphisms

@ Algorithms to compute the composition of morphisms and identity
morphisms of objects

matg

17/44

Computable categories

A category becomes computable through
@ Data structures for objects and morphisms

@ Algorithms to compute the composition of morphisms and identity
morphisms of objects

matg

17/44

Computable categories

A category becomes computable through
@ Data structures for objects and morphisms

@ Algorithms to compute the composition of morphisms and identity
morphisms of objects

matg

17/44

The language of category theory

vecg and matg are examples of abelian categories.

18/44

The language of category theory

vecg and matg are examples of abelian categories.

Some categorical operations in abelian categories

18/44

The language of category theory

vecg and matg are examples of abelian categories.

Some categorical operations in abelian categories
@ @ : Obj x Obj — Obj

18/44

The language of category theory

vecg and matg are examples of abelian categories.

Some categorical operations in abelian categories
@ @ : Obj x Obj — Obj
@ +,— : Hom(A, B) x Hom(A, B) — Hom(A, B)

18/44

The language of category theory

vecg and matg are examples of abelian categories.

Some categorical operations in abelian categories
@ @ : Obj x Obj — Obj
@ +,— : Hom(A, B) x Hom(A, B) — Hom(A, B)
@ ker : Hom(A, B) — Obj

18/44

The language of category theory

vecg and matg are examples of abelian categories.

Some categorical operations in abelian categories
@ @ : Obj x Obj — Obj
@ +,— : Hom(A, B) x Hom(A, B) — Hom(A, B)
@ ker: Hom(A, B) — Obj

18/44

Categorical description of the kernel

What do we want from a kernel?

19/44

Categorical description of the kernel

What do we want from a kernel?

Given o : V — W in vecq.

19/44

Categorical description of the kernel

What do we want from a kernel?

Given o : V — W in vecq.

ker(a) = {ve V|a(v)=0}

19/44

Categorical description of the kernel

What do we want from a kernel?

Given o : V — W in vecq.

ker(a) = {ve V|a(v)=0}

Complete understanding about what is mapped to 0.

19/44

Categorical description of the kernel

Complete understanding about what is mapped to 0.

20/44

Categorical description of the kernel

Complete understanding about what is mapped to 0.

20/44

Categorical description of the kernel

Complete understanding about what is mapped to 0.

dim (ker(ay))

20/44

Categorical description of the kernel

Complete understanding about what is mapped to 0.

dim (ker(ay))

20/44

Categorical description of the kernel

Complete understanding about what is mapped to 0.

20/44

Categorical description of the kernel

Complete understanding about what is mapped to 0.

dim (ker(ay))

20/44

Categorical description of the kernel

Complete understanding about what is mapped to 0.

20/44

Categorical description of the kernel

Complete understanding about what is mapped to 0.

20/44

Categorical description of the kernel

Complete understanding about what is mapped to 0.

20/44

Categorical description of the kernel

Complete understanding about what is mapped to 0.

20/44

Categorical description of the kernel

Complete understanding about what is mapped to 0.

20/44

Categorical description of the kernel

Complete understanding about what is mapped to 0.

20/44

Categorical description of the kernel

Complete understanding about what is mapped to 0.

20/44

Categorical description of the kernel

Complete understanding about what is mapped to 0.

20/44

Categorical description of the kernel

Let ¢ € Hom(A, B).

21/44

Categorical description of the kernel

Let » € Hom(A, B).

21/44

Categorical description of the kernel

Let ¢ € Hom(A, B). To fully describe the kernel of ¢ . ..

21/44

Categorical description of the kernel

Let ¢ € Hom(A, B). To fully describe the kernel of ¢ . ..

. one needs an object ker ¢,

ker ¢

21/44

Categorical description of the kernel

Let ¢ € Hom(A, B). To fully describe the kernel of ¢ . ..

. one needs an object ker ¢,
its embedding « = KernelEmbedding(y),

21/44

Categorical description of the kernel

Let ¢ € Hom(A, B). To fully describe the kernel of ¢ . ..

. one needs an object ker ¢,
its embedding « = KernelEmbedding(y),
and for every test morphism 7

0

ker ¢ E\

¥
s ,A—B

7

0

21/44

Categorical description of the kernel

Let ¢ € Hom(A, B). To fully describe the kernel of ¢ . ..

. one needs an object ker ¢,

its embedding « = KernelEmbedding(y),
and for every test morphism 7
a unique morphism \ = KernelLift(y, 7)

0

kercp/\
-~ % 0

A—— B

e

21/44

Categorical description of the kernel

Let ¢ € Hom(A, B). To fully describe the kernel of ¢ . ..

. one needs an object ker ¢,
its embedding « = KernelEmbedding(y),
and for every test morphism 7
a unique morphism X\ = KernelLift(y, 7), such that

21/44

Implementation of the kernel

matg
Obj := Ny, Hom (m, n) := Qm™*" J

22/44

Implementation of the kernel

matg

Obj := Ny, Hom (m, n) :== Q™*"

(@j)ij
m-—m—n

22/44

Implementation of the kernel

matg

Obj := Ny, Hom (m, n) :== Q™*"

ker((a;j),-j)

(@j)ij
m-—m—n

22/44

Implementation of the kernel

matg
Obj:=Np, Hom(m,n):=Qm*"
ker((aj);)
(aj);
m——n
Compute
@ ker(ay); := m — rank((aj);)

22/44

Implementation of the kernel

matg
Obj:=Np, Hom(m,n):=Qm*"
ker((aj);)
K (a)
<N m
Compute
@ ker(ay); := m — rank((aj);)

22/44

Implementation of the kernel

matg
Obj := Ny, Hom (m, n) :== Q™*"
ker((a;j),-j)
~ m—"2n
Compute
@ ker(aj); := m — rank((a;);)
@ x := matrix whose rows form a basis of solutions of X - (&;); =0

22/44

Implementation of the kernel

matg
Obj := Ny, Hom (m, n) :== Q™*"
ker((a;j),-j)
L (a)j
/’ m——n
t

Compute

@ ker(aj); := m — rank((a;);)

@ x := matrix whose rows form a basis of solutions of X - (&;); =0

22/44

Implementation of the kernel

matg
Obj := Ny, Hom (m, n) :== Q™*"
ker((a;j),-j)
L (g
Al /, B
t
Compute
@ ker(aj); := m — rank((a;);)
@ x := matrix whose rows form a basis of solutions of X - (&;); =0

22/44

Implementation of the kernel

matg
Obj := Ny, Hom (m, n) := Q™*"
ker((aj)i)
L (ap)y
Al /, -
t
Compute
@ ker(aj); := m — rank((a;);)
@ x := matrix whose rows form a basis of solutions of X - (&;); =0
@)\ :=the unique solution of X - k =7

22/44

The language of category theory

23/44

The language of category theory

Given a diagram of vector spaces:

23/44

The language of category theory

Given a diagram of vector spaces:

ker S A

W—m@

>

ker ¢

23/44

The language of category theory

Given a diagram of vector spaces:

ker S A B
: al l
ker ¢ A B

23/44

The language of category theory

Given a diagram of vector spaces:

W—m@

23/44

The language of category theory

Given a diagram of vector spaces:

Xeker—— xc A—— B

‘| |

ker ¢ A B

23/44

The language of category theory

Given a diagram of vector spaces:

Xeker—— xc A—— B

‘| |

ker —— a(x) e A —— B

23/44

The language of category theory

Given a diagram of vector spaces:

Xeker—— xc A—— B

‘| l

ker —— a(x)e A — 0€B

23/44

The language of category theory

Given a diagram of vector spaces:

Xeker—— xc A—— B

Pl l

a(x) ekers a(x) e A — 0€B

23/44

The language of category theory

Given a diagram of vector spaces:

Xeker—— xc A—— B

Pl l

a(x) ekers a(x) e A — 0€B

23/44

The language of category theory

The same example in the language of category theory:

K',/

AI

ker B’
: al l
ker A d B

24/44

The language of category theory

The same example in the language of category theory:

K',/

AI

ker B’
: al l
ker A d B

24/44

The language of category theory

The same example in the language of category theory:

K',/

AI

ker B’
: al l
ker A d B

24/44

The language of category theory

The same example in the language of category theory:

24/44

The language of category theory

The same example in the language of category theory:

L = KernelLift(¢,a o #)

24/44

The language of category theory

The same example in the language of category theory:

K

ker A B’
v @
ker A B

L = KernelLift(¢,a o #)

This term may be interpreted in other contexts as well.

24/44

The language of category theory

25/44

The language of category theory

VeCQ

25/44

The language of category theory

veCQ mat@

25/44

The language of category theory

vecq ~ matq

25/44

The language of category theory

vecq ~ matq

categorical abstraction

25/44

The language of category theory

KernelObject
KernelEmbedding
KernelLift

veCQ ~ mat@

categorical abstraction

25/44

The language of category theory

KernelObject
KernelEmbedding
KernelLift

vecq ~ matg O

categorical abstraction

25/44

The language of category theory

KernelObject

veee = matg O KernelEmbedding
KernelLift
categorical abstraction :

categorical language

25/44

The language of category theory

KernelObject
A O KernelEmbedding
KernelLift

L S ——

categorical language

25/44

An introduction to finitely presented modules

Let R be aring.

Definition
A (left) R-module M is called finitely presented if there exist
@ n,m e Ny,

@r,...,me R™",

26/44

27/44

Examples

~ R1><n
M=
R= Q[va Z]

27/44

Examples

~ R1><n
M=
R= Q[va Z]

Qlx, y, 2]

(x2+y2+ 22 —1)

27/44

Examples

~ R1><n
M = [
R = Q[va Z]
Qlx,y,2]
(x2+y2+ 22 —1)
Qlx,y,2]'*?

(x =»),(r —x))

27/44

Examples

~ R1><n
M o <r17-~-7rm>
R:Q[va*z]
Qlx,y,2]
(x2+y2+ 22 —1)
Qlx,y, 22
((x =»),(r =)
Qlx,y,2]'*5
0 0 0 0 Xz —z2
0 0 0 0 Xy —yz
0 —X2z+xyz+xz2 y?z —xz+yz x-— 0
(Rowsof [oy yo 0 2 e |
—xy X3+ xPy+x%z xy2 —x24xy 0 X—y
z 0 0 0 0 0

27/44

Examples

~ R1><n
Mﬁ <r17-~-7rm>
R = Q[va* Z]
Q[x,y,2]
(x2+y2+ 22 —1)
Qlx,y,2]' 2
((x =), (v =)
Qlx,y,2]'*¢
0 0 0 0 Xz —z2
0 0 0 0 Xy —yz
(0 —XPz+4xyz+xz%2 y?z —xz+yz x-—y 0)
0 0 0 0 x? — Xz
—xy X3+ xPy+x2z xy2 —x24xy 0 X—y
z 0 0 0 0 0

27/44

Category of finitely presented modules

Finitely presented R-modules form a category

28/44

Category of finitely presented modules

Finitely presented R-modules form a category

rnod;q

28/44

Category of finitely presented modules

Finitely presented R-modules form a category
rnod;q

with R-linear maps as morphisms.

28/44

Category of finitely presented modules

Finitely presented R-modules form a category
modR

with R-linear maps as morphisms.

Computerfriendly model?

28/44

Applying the organizing principle

Goal: create computerfriendly model fpresg of modpg.

What we need

@ Data structures
@ objects
@ morphisms
© Algorithms
e composition
o identities

o KernelObject
.-

29/44

Applying the organizing principle

Goal: create computerfriendly model fpresg of modpg.

What we need

@ Data structures
@ objects
@ morphisms
© Algorithms
e composition
o identities

o KernelObject
.-

29/44

Applying the organizing principle

Goal: create computerfriendly model fpresg of modpg.

What we need

@ Data structures
@ objects
@ morphisms
© Algorithms
e composition
o identities

o KernelObject
.-

29/44

Data structures: objects

1x6
Qlx,y, 2™
0 0 0 0 Xz —z?
0 0 0 0 Xy —yz
0 —xXPz+4+xyz+x2%> y?z —xz+yz x-—y 0
(Rowsof 0 0 0 2 oxz |)
—xy X3+ Xy +x2z xy2 —x24xy 0 X—y

0 0 0 0 0

N

30/44

Data structures: objects

Qlx,y,2]'~®
0 0 0 0 xz —z?
0 0 0 0 Xy —yz
(0 —xXPz+4+xyz+x2%2 y?z —xz+yz x-—y 0
0 0 0 0 x? —xz
—xy X34+ xy+x2z xy2 —x2+xy 0 X—y
z 0 0 0 0 0

30/44

Data structures: objects

Qlx,y,2]'~®
0 0 0 0 xz —z?
0 0 0 0 Xy —yz
(0 —xXPz+xyz+x2% y?’z —xz+yz x-—y 0
0 0 0 0 x? —xz
—xy —xX34+x2y+x2z xy2 —x2+4+xy 0 X—y
z 0 0 0 0 0

30/44

Data structures: objects

Qlx,y.2]"®
0 0 0 0 xz —z2
0 0 0 0 Xy —yz
(0 —xXPz+xyz+x2% y?’z —xz+yz x-—y 0)
0 0 0 0 x2 —xz
xy —xX34+xPy+x2z xy? —x2+4xy 0 X—y
z 0 0 0 0 0
Idea: a matrix M € R™" can represent the module 8"

(

My

30/44

Data structures: objects

Qlx,y,2]'~®
0 0 0 0 xz —z?
0 0 0 0 Xy —yz
(0 —xXPz+xyz+x2% y?’z —xz+yz x-—y 0)
0 0 0 0 x? —xz
xy —xX34+xPy+x2z xy? —x2+4xy 0 X—y
z 0 0 0 0 0

Idea: a matrix M € R™*" can represent the module %.

ObjfpresR = L-_"J Rm><n

m,neNy

30/44

Applying the organizing principle

Goal: create computerfriendly model fpresg of modpg.

What we need

@ Data structures
@ objects
@ morphisms
© Algorithms
@ composition
o identities

o KernelObject
.-

31/44

Applying the organizing principle

Goal: create computerfriendly model fpresg of modpg.

What we need

@ Data structures
@ objects
@ morphisms
© Algorithms
@ composition
o identities

o KernelObject
.-

31/44

Applying the organizing principle

Goal: create computerfriendly model fpresg of modpg.

What we need

@ Data structures
@ objects Vv
@ morphisms
© Algorithms
@ composition
o identities

o KernelObject
.-

31/44

Applying the organizing principle

Goal: create computerfriendly model fpresg of modpg.

What we need

@ Data structures
@ objects Vv
@ morphisms
© Algorithms
@ composition
o identities

o KernelObject
.-

31/44

Data structures: morphisms

Given: M € R™N and M’ ¢ R™'*"'

32/44

Data structures: morphisms

Given: M € R™N and M’ ¢ R™'*"'

32/44

Data structures: morphisms

Given: M € R™N and M’ ¢ R™'*"'

R1xn Rixn
(M) (M)

32/44

Data structures: morphisms

Given: M € R™N and M’ ¢ R™'*"'

R1xn

Rixn

(M)

(M)

32/44

Data structures: morphisms

Given: M € R™N and M’ ¢ R™'*"'

R1xn Rixn
(M) (M)
& — ri

32/44

Data structures: morphisms

Given: M € R™N and M’ ¢ R™'*"'

(r1)
R1xn In Rixn’

(M) (M)

32/44

Data structures: morphisms

Given: M € R™N and M’ ¢ R™'*"'

HOoMipres , (M, M") :=

32/44

Data structures: morphisms

Given: M € R™N and M’ ¢ R™'*"'

n
A=|:
R1xn In Rixn’

HOoMipres , (M, M") :=

Ae R™7

32/44

Data structures: morphisms

Given: M € R™N and M’ ¢ R™'*"'

n
A=|:
R1xn In Rixn’

HOoMipres , (M, M") :=

Ac R™™ suych that

32/44

Data structures: morphisms

Given: M € R™N and M’ ¢ R™'*"'

n
A=|:
R1xn In Rixn’

(M) (M)

HOoMipres , (M, M") :=

A€ R™" suchthat {Rowsof M-A} C (M)

32/44

Data structures: morphisms

Given: M € R™N and M’ ¢ R™'*"'

n
A=|:
R1xn In Rixn’

(M) (M)

HOoMipres , (M, M") :=

Ac R™" suchthat IXec R™™ - M.A=X-M

32/44

Data structures: morphisms

Given: M € R™N and M’ ¢ R™'*"'

n
A=|:
R1xn In H1><n’

(M) (M)

HomfpresR(M, M/) =

Ac R™ gsuchthat IXec R™M - M.A=X-M

A defines the 0 morphism

32/44

Data structures: morphisms

Given: M € R™N and M’ ¢ R™'*"'

n
A=|:
R1xn In Rixn’

(M) (M)

HomfpresR(M, M/) =

Ac R™ gsuchthat IXec R™M - M.A=X-M

A defines the 0 morphism iff 3X € R™™ : A= X - M’

32/44

Data structures: morphisms

Given: M € R™N and M’ ¢ R™'*"'

n
A=|:
R1xn In Rixn’

(M) (M)

HomfpresR(M, M/) =

Ac R™" gsuchthat IXec R™M - M.A=X-M

A defines the 0 morphism iff 3IX € R™™ : A= X - M’

32/44

Data structures: morphisms

Deciding well-definedness and being zero of morphisms in fpresg
requires finding particular solutions of inhomogeneous linear systems.

33/44

Data structures: morphisms

Deciding well-definedness and being zero of morphisms in fpresg
requires finding particular solutions of inhomogeneous linear systems.

Ring | Algorithms

33/44

Data structures: morphisms

Deciding well-definedness and being zero of morphisms in fpresg
requires finding particular solutions of inhomogeneous linear systems.

Ring | Algorithms
Q | Gauss

33/44

Data structures: morphisms

Deciding well-definedness and being zero of morphisms in fpresg
requires finding particular solutions of inhomogeneous linear systems.

Ring | Algorithms
Q Gauss
Z Hermite

33/44

Data structures: morphisms

Deciding well-definedness and being zero of morphisms in fpresg
requires finding particular solutions of inhomogeneous linear systems.

Ring | Algorithms
Q Gauss
Z Hermite
Q[x, y, z|] | Buchberger

33/44

Applying the organizing principle

Goal: create computerfriendly model fpresg of modpg.

What we need

@ Data structures
@ objects Vv
@ morphisms
© Algorithms
@ composition
o identities

o KernelEmbedding
.-

34/44

Applying the organizing principle

Goal: create computerfriendly model fpresg of modpg.

What we need

@ Data structures
@ objects Vv
@ morphisms
© Algorithms
@ composition
o identities

o KernelEmbedding
.-

34/44

Applying the organizing principle

Goal: create computerfriendly model fpresg of modpg.

What we need

@ Data structures
@ objects Vv
@ morphisms v
© Algorithms
@ composition
o identities

o KernelEmbedding
.-

34/44

Applying the organizing principle

Goal: create computerfriendly model fpresg of modpg.

What we need

@ Data structures v
@ objects Vv
e morphisms v
© Algorithms
@ composition
o identities

o KernelEmbedding
@ -

34/44

Applying the organizing principle

Goal: create computerfriendly model fpresg of modpg.

What we need

@ Data structures
@ objects Vv
e morphisms v
© Algorithms
@ composition
o identities

o KernelEmbedding
@ -

34/44

Applying the organizing principle

Goal: create computerfriendly model fpresg of modpg.

What we need

@ Data structures
@ objects Vv
e morphisms v
© Algorithms
@ composition
o identities

o KernelEmbedding
@ -

34/44

Applying the organizing principle

Goal: create computerfriendly model fpresg of modpg.

What we need

@ Data structures
@ objects Vv
@ morphisms v
© Algorithms
@ composition
o identities

o KernelEmbedding
@ -

34/44

Applying the organizing principle

Goal: create computerfriendly model fpresg of modpg.

What we need

@ Data structures
@ objects Vv
@ morphisms v
© Algorithms
@ composition v
o identities

o KernelEmbedding
@ -

34/44

Applying the organizing principle

Goal: create computerfriendly model fpresg of modpg.

What we need

@ Data structures
@ objects Vv
e morphisms v
© Algorithms
e composition v
o identities

o KernelEmbedding
@ -

34/44

Applying the organizing principle

Goal: create computerfriendly model fpresg of modpg.

What we need

@ Data structures
@ objects Vv
e morphisms v
© Algorithms
e composition v
e identities

o KernelEmbedding
@ -

34/44

Applying the organizing principle

Goal: create computerfriendly model fpresg of modpg.

What we need

@ Data structures
@ objects Vv
e morphisms v
© Algorithms
e composition v
o identities v

o KernelEmbedding
@ -

34/44

Applying the organizing principle

Goal: create computerfriendly model fpresg of modpg.

What we need

@ Data structures
@ objects Vv
e morphisms v
© Algorithms
e composition v
o identities v

o KernelEmbedding
@ -

34/44

Applying the organizing principle

Goal: create computerfriendly model fpresg of modpg.

What we need

@ Data structures
@ objects Vv
e morphisms v
© Algorithms
e composition v
o identities v

o KernelEmbedding
@ -

34/44

Kernels

We cannot expect kernels to exist in fpresg for all rings:

35/44

Kernels

We cannot expect kernels to exist in fpresg for all rings:

R:=Kk[Z,X; | i€ N|/(ZX;|i€eN).

35/44

Kernels

We cannot expect kernels to exist in fpresg for all rings:

R:=k[Z,X;|ieN]/(ZX;|i € N).Then

a:R—R:r—2Z-r

35/44

Kernels

We cannot expect kernels to exist in fpresg for all rings:

Example
R:=k[Z,X;|ieN]/(ZX;|i € N).Then

a:R—R:r—2Z-r

has

ker(a) = (X; | i € N).

35/44

Kernels

Rings for which fpresz has kernels are called coherent.

36/44

Kernels

Rings for which fpresz has kernels are called coherent.

_

36/44

Kernels

Rings for which fpresz has kernels are called coherent.

Q, z

36/44

Kernels

Rings for which fpresz has kernels are called coherent.

Q Z, Qlxy,Z] \

36/44

Kernels

Rings for which fpresz has kernels are called coherent.

Q Z, Qx,y,z], QX|ieN] \

36/44

Kernels

37/44

Kernels

Let R be a ring equipped with the following algorithm:

37/44

Kernels

Let R be a ring equipped with the following algorithm:
@ Input: Ae R™",

37/44

Kernels

Let R be a ring equipped with the following algorithm:
@ Input: Ae R™",
@ Output: S € RS*™ s.1. the rows of S generate the row kernel of A.

37/44

Kernels

Let R be a ring equipped with the following algorithm:

@ Input: Ae R™",

@ Output: S € RS*™ s.1. the rows of S generate the row kernel of A.
Then we have an algorithm for computing

37/44

Kernels

Let R be a ring equipped with the following algorithm:

@ Input: Ae R™",

@ Output: S € RS*™ s.1. the rows of S generate the row kernel of A.
Then we have an algorithm for computing

@ KernelObject

37/44

Kernels

Let R be a ring equipped with the following algorithm:

@ Input: Ae R™",

@ Output: S € RS*™ s.1. the rows of S generate the row kernel of A.
Then we have an algorithm for computing

@ KernelObject

@ KernelEmbedding

37/44

Kernels

Theorem
Let R be a ring equipped with the following algorithm:

@ Input: Ae R™",

@ Output: S € RS*™ s.1. the rows of S generate the row kernel of A.
Then we have an algorithm for computing

@ KernelObject

@ KernelEmbedding

in fpresg.

37/44

Kernels

Theorem
Let R be a ring equipped with the following algorithm:

@ Input: Ae R™",

@ Output: S € RS*™ s.1. the rows of S generate the row kernel of A.
Then we have an algorithm for computing

@ KernelObject

@ KernelEmbedding

in fpresg.

Can you prove this theorem?

37/44

Categorical abstraction is a powerful organizing principle and
computational tool.

e Why is it a computational tool?

38/44

Computing the intersection

Let My C N and M, C N subobjects in an abelian category.

39/44

Computing the intersection

Let My — N and M, — N subobjects in an abelian category.

39/44

Computing the intersection

Let My — N and M, — N subobjects in an abelian category.
Compute their intersection v : My N Mo — N.

39/44

Computing the intersection

Let My — N and M, — N subobjects in an abelian category.
Compute their intersection v : My N Mo — N.

39/44

Computing the intersection

Let My — N and M, — N subobjects in an abelian category.
Compute their intersection v : My N Mo — N.

M1 @Mg N

39/44

Computing the intersection

Let My — N and M, — N subobjects in an abelian category.
Compute their intersection v : My N Mo — N.

M

M1 @Mg N

i

Mo

39/44

Computing the intersection

Let My — N and M, — N subobjects in an abelian category.
Compute their intersection v : My N Mo — N.

M
/ \
M1 D Mg N
) /
Mo

N

39/44

Computing the intersection

Let My — N and M, — N subobjects in an abelian category.
Compute their intersection v : My N Mo — N.

M
/ \
M1 D Mg N
) /
Mo

N

@ 7; := ProjectionInFactorOfDirectSum ((My, M) , i), i = 1,2

39/44

Computing the intersection

Let My — N and M, — N subobjects in an abelian category.
Compute their intersection v : My N Mo — N.

M
Uy
]

/ \
P =11 07 l2 0 T2
N

My © Mo

Mo

@ 7; := ProjectionInFactorOfDirectSum ((My, M) , i), i = 1,2

39/44

Computing the intersection

Let My — N and M, — N subobjects in an abelian category.
Compute their intersection v : My N Mo — N.

M
Uy
]

/ \
P =11 07 l2 0 T2
N

My © Mo

Mo

@ 7; := ProjectionInFactorOfDirectSum ((My, M) , i), i = 1,2
@ Y :=110mM — L2072

39/44

Computing the intersection

Let My — N and M, — N subobjects in an abelian category.
Compute their intersection v : My N Mo — N.

M
Uy
]

/ \
P =11 07 l2 0 T2
N

M1ﬂM2¢)M1@M2

Mo

@ 7; := ProjectionInFactorOfDirectSum ((My, M) , i), i = 1,2
@ Y :=110mM — L2072

39/44

Computing the intersection

Let My — N and M, — N subobjects in an abelian category.
Compute their intersection v : My N Mo — N.

M
Uy
]

/ \
P =11 07 l2 0 T2
N

M1ﬂM2¢)M1@M2

Mo

@ 7; := ProjectionInFactorOfDirectSum ((My, M) , i), i = 1,2
@ Y :=110mM — L2072
@ x := KernelEmbedding (¢)

39/44

Computing the intersection

Let My — N and M, — N subobjects in an abelian category.
Compute their intersection v : My N Mo — N.

M
Uy
]

/ \
P =11 07 l2 © T2
N

M1ﬂM2¢)M1@M2

Mo

@ 7; := ProjectionInFactorOfDirectSum ((My, M) , i), i = 1,2
@ Y :=110mM — L2072
@ x := KernelEmbedding (¢)

39/44

Computing the intersection

Let My — N and M, — N subobjects in an abelian category.
Compute their intersection v : My N Mo — N.

M
Uy
]

/ \
P =11 07 l2 © T2
N

M1ﬂM2¢)M1@M2

Mo

@ 7; := ProjectionInFactorOfDirectSum ((My, M) , i), i = 1,2
@ Y :=110mM — L2072
@ x := KernelEmbedding (¢)

@ y:=(10mMOK
39/44

Translation to CAP

7j := ProjectionInFactorOfDirectSum ((My, M) , i), i = 1,2
@Y i=11 0T —lpOT2

k := KernelEmbedding ()

Y =1l40T{OK

40/44

Translation to CAP

7j := ProjectionInFactorOfDirectSum ((My, Ma) , i), i = 1,2
pil := ProjectionInFactorOfDirectSum([M1, M2], 1
pi2 := ProjectionInFactorOfDirectSum([M1, M2], 2);

Q=110 — 20T

k := KernelEmbedding ()

YI=1{0M 0K

40/44

Translation to CAP

7j := ProjectionInFactorOfDirectSum ((My, Ma) , i), i = 1,2
pil := ProjectionInFactorOfDirectSum([M1, M2], 1
pi2 := ProjectionInFactorOfDirectSum([M1, M2], 2);

@Y i=11 0T —lpOT2
lambda := PostCompose(iotal, pil);
phi := lambda - PostCompose(iota2, pi2);

k := KernelEmbedding ()

YI=1{0M 0K

40/44

Translation to CAP

7j := ProjectionInFactorOfDirectSum ((My, Ma) , i), i = 1,2
pil := ProjectionInFactorOfDirectSum([M1, M2], 1
pi2 := ProjectionInFactorOfDirectSum([M1, M2], 2);

@Y i=11 0T —lpOT2
lambda := PostCompose(iotal, pil);
phi := lambda - PostCompose(iota2, pi2);

 := KernelEmbedding ()
kappa := KernelEmbedding(phi);

YI=1{0M 0K

40/44

Translation to CAP

7j := ProjectionInFactorOfDirectSum ((My, Ma) , i), i = 1,2
pil := ProjectionInFactorOfDirectSum([M1, M2], 1
pi2 := ProjectionInFactorOfDirectSum([M1, M2], 2);
@Y i=11 0T —lpOT2
lambda := PostCompose(iotal, pil);
phi := lambda - PostCompose(iota2, pi2);

 := KernelEmbedding ()
kappa := KernelEmbedding(phi);

Yi=1{0M OK
gamma := PostCompose(lambda, kappa);

40/44

Translation to CAP

pil := ProjectionInFactorOfDirectSum([M1, M2], 1);
pi2 := ProjectionInFactorOfDirectSum([M1, M2], 2);
lambda := PostCompose(iotal, pil);

phi := lambda - PostCompose(iota2, pi2);

kappa := KernelEmbedding(phi);

gamma := PostCompose(lambda, kappa);

40/44

Translation to CAP

pil := ProjectionInFactorOfDirectSum([M1, M2 1, 1);
pi2 := ProjectionInFactorOfDirectSum([M1, M2 1, 2);
lambda := PostCompose(iotal, pil);

phi := lambda - PostCompose(iota2, pi2);

kappa := KernelEmbedding(phi);

gamma := PostCompose(lambda, kappa);

40/44

Translation to CAP

IntersectionSubobjects := function(iotal, iotaz2)
pil := ProjectionInFactorOfDirectSum([M1, M2 1, 1);
pi2 := ProjectionInFactorOfDirectSum([M1, M2 1, 2);
lambda := PostCompose(iotal, pil);
phi := lambda - PostCompose(iota2, piz2);
kappa := KernelEmbedding(phi);
gamma := PostCompose (lambda, kappa);

40/44

Translation to CAP

IntersectionSubobjects := function(iotal, iotaz2)
M1 := Source(iotal);
M2 := Source(iota2);
pil := ProjectionInFactorOfDirectSum([M1, M2 1, 1);
pi2 := ProjectionInFactorOfDirectSum([M1, M2 1, 2);
lambda := PostCompose(iotal, pil);
phi := lambda - PostCompose(iota2, piz2);
kappa := KernelEmbedding(phi);
gamma := PostCompose (lambda, kappa);

40/44

Translation to CAP

IntersectionSubobjects := function(iotal, iotaz2)
M1 := Source(iotal);
M2 := Source(iota2);
pil := ProjectionInFactorOfDirectSum([M1, M2 1, 1);
pi2 := ProjectionInFactorOfDirectSum([M1, M2 1, 2);
lambda := PostCompose(iotal, pil);
phi := lambda - PostCompose(iota2, piz2);
kappa := KernelEmbedding(phi);
gamma := PostCompose (lambda, kappa);
return gamma;
end;

40/44

Translation to CAP

IntersectionSubobjects := function(iotal, iotaz2)

local M1, M2, pil, pi2, lambda, phi, kappa, gamma;

M1 := Source(iotal);

M2 := Source(iota2);

pil := ProjectionInFactorOfDirectSum([M1, M2 1, 1);
pi2 := ProjectionInFactorOfDirectSum([M1, M2 1, 2);
lambda := PostCompose(iotal, pil);

phi := lambda - PostCompose(iota2, piz2);

kappa := KernelEmbedding(phi);

gamma := PostCompose (lambda, kappa);

return gamma;
end;

40/44

Computing the intersection

Compute the intersection in matg of

(110 (1 0 1

“=1o0 1 1 2=\ 1 1 0
Aﬂ” ﬁv > e
I

2 3 2

41/44

Computing the intersection

Compute the intersection in matg of

(110 /10 1
“=1o0 1 1 2=\ 1 1 0

M; < N > Mo

Il I Il

2 3 2
gap> gamma := IntersectionOfSubobject(iotal, iota2);

<A morphism in the category of matrices over Q>

41/44

Computing the intersection

Compute the intersection in matg of

(110 /10 1
“=1o0 1 1 2=\ 1 1 0

M; < N > Mo

Il I Il

2 3 2
gap> gamma := IntersectionOfSubobject(iotal, iota2);

<A morphism in the category of matrices over Q>

gap> Display(gamma) ;
rt 1, 1, 01]

A morphism in the category of matrices over Q

41/44

Computing the intersection

The same algorithm can be applied in fpresp

42/44

Computing the intersection

The same algorithm can be applied in fpresg (your turn).

42/44

AP packages

IntrinsicCategories
(CategoriesWithAmbiemObjects AttributeCategory Actions]
(LinearAIgebra)(—(GroupRepresentations)(—(lnternalExteriorAIgebra)
I

(ComplexesAndFiIteredObjecls €

(GeneralizedMorphisms)(—(HomologicaIAIgebra)
(ModuIePresentations)(—(GradedModuIePresentations)

homalg2

MotivesForBiArrangements
HomotopyCategories

(Bicomplexes

ToricSheaves

complex] (CategoryOfProjectiveGradedObjects](—

StableCategories PresentationCategory
FrobeniusCategories (PresentationsByProjectiveGradedModuIes)
TriangulatedCategories

Bialgebroids

FreydCategories

FunctorCategories

43/44

Categorical abstraction is a powerful organizing principle and
computational tool.

44/44

	What is categorical abstraction?
	How can it be used as an organizing priniciple?
	Why is it a computational tool?

