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Isomorphisms

«

idA:ﬁoaCA BQaOB:idB

B

@ A and B are isomorphic.

@ Notation: A= Bor A~ B.

@ «is an isomorphism with inverse 5.
@ [ is an isomorphism with inverse «.

Probably the most important notion in category theory.
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@ Objg,,, := {all sets}
@ Homge(M, N) := {maps from M to N'}

@ o given by composition of maps

eidy:M—M:m—m

isomorphisms = bijections
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Rels

@ Objg, := {all sets}
@ Homges(M, N) := {relations from Mto N, i.e., subsets of M x N}

@ o given by composition of relations

@ idy :={(mm)|meM} cMxM

gof:={(ac)cAxC|3beB:(ab)cf(bc)ecg}
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Let G be a group.

@ Objg := {*} (any singleton)
@ Homg(x, %) := G

@ o given by group multiplication

@ id, := identity elementin G

isomorphisms = all elements in G
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vecQ

@ Obj,, = {all finite dimensional Q-vector spaces}
@ Homyec, (V, W) := {Q—Iinear maps from V to W}

@ o given by composition of maps

eidy:M—M:m—m

isomorphisms = Q-linear bijections
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Example: Matrices

matg

® Objyy, = No
@ HoMyee, (M, n) := Q"

@ AocB:=B-A

@ id;, : the m x midentity matrix

isomorphisms = invertible matrices
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F
A B
FA
— 2
A B

@ F:Obj, — Objy
@ Hom (A, A') — Hompg(FA, FA')  (respects id and o, bijection)

evVBeB dJAeA: FA~B (essentially surjective)

12/44



Equivalences

Let's compare matg and vecg.

13/44



Equivalences

Let's compare matg and vecg.

matQ vecqQ

13/44



Equivalences

Let's compare matg and vecg.

matQ vecqQ

e F: Obj e, — Objyecy,

13/44



Equivalences

Let's compare matg and vecg.

F

matQ vecqQ

e F: Obj e, — Objyecy,

13/44



Equivalences

Let's compare matg and vecg.

F

matQ vecqQ

e F: Obj e, — Objyecy,

13/44



Equivalences

Let's compare matg and vecg.

F

matQ vecqQ

m — Q1><m

e F: Obj e, — Objyecy,

13/44



Equivalences

Let's compare matg and vecg.

F

matQ vecqQ

m — Q1><m

e F: Obj e, — Objyecy,

[*) Hommat(@(m, n) — HomveC@(Q1 Xma Q1 Xn)

13/44



Equivalences

Let's compare matg and vecg.

F

matQ vecqQ

(ay) ,-,-T

e F: Obj e, — Objyecy,

[*) Hommat(@(m, n) — HomveC@(Q1 Xma Q1 Xn)

13/44



Equivalences

Let's compare matg and vecg.

matQ F VCCQ

m Q‘I xm
O N A

n @1 xn

e F: Obj e, — Objyecy,

[*) Hommat(@(m, n) — HomveC@(Q1 Xma Q1 Xn)

13/44



Equivalences

Let's compare matg and vecg.

matQ F VCCQ

m Q‘I xm
O N A

n @1 xn

e F: Obj e, — Objyecy,

® HoMpu, (M, n) — Homyee, (QT™, QM) (respects id and o)

13/44



Equivalences

Let's compare matg and vecg.

matQ F VCCQ

m Q‘I xm
O N A

n @1 xn

e F: Obj e, — Objyecy,
® HoMpu, (M, n) — Homyee, (QT™, QM) (respects id and o)

@ VB € vecg

13/44



Equivalences

Let's compare matg and vecg.

F

matQ vecqQ

e F: Obj e, — Objyecy,
® HoMpu, (M, n) — Homyee, (QT™, QM) (respects id and o)

@ VB € vecg

13/44



Equivalences

Let's compare matg and vecg.

F

matQ vecqQ

e F: Obj e, — Objyecy,
® HoMpu, (M, n) — Homyee, (QT™, QM) (respects id and o)

@ VB € vecg

13/44



Equivalences

Let's compare matg and vecg.

F

matQ vecqQ

e F: Obj e, — Objyecy,
® HoMpu, (M, n) — Homyee, (QT™, QM) (respects id and o)

@ VBcvecg dmeE matg:

13/44



Equivalences

Let's compare matg and vecg.

F

matQ vecqQ

e F: Obj e, — Objyecy,
® HoMpu, (M, n) — Homyee, (QT™, QM) (respects id and o)

@ VBcvecg dmeE matg:

13/44



Equivalences

Let's compare matg and vecg.

matg F vecq
Q1 xm
—
m B

e F: Obj e, — Objyecy,
® HoMpu, (M, n) — Homyee, (QT™, QM) (respects id and o)

@ VBcvecg dmeE matg:

13/44



Equivalences

Let's compare matg and vecg.

matg F vecq
Q1 xm
— 2
m B

e F: Obj e, — Objyecy,
® HoMpu, (M, n) — Homyee, (QT™, QM) (respects id and o)

@ VBcvecg dmeE matg:

13/44



Equivalences

Let's compare matg and vecg.

matg F vecq
Q1 xm
— 2
m B

e F: Obj e, — Objyecy,
® HoMpu, (M, n) — Homyee, (QT™, QM) (respects id and o)

@ VBevecg Imematg: Q*"~B

13/44



Equivalences

Let's compare matg and vecg.

matg F vecq
Q1 xXm
— 2
m B

e F: Obj e, — Objyecy,
® HoMpu, (M, n) — Homyee, (QT™, QM) (respects id and o)

@ VBecvecg Imematg: Q"~B m=dim(B)

13/44



Categorical abstraction

matg =~ vecq

14/44



Categorical abstraction

matg =~ vecq

For a category theorist, these two categories look the same.

14/44



Categorical abstraction

15/44



Categorical abstraction

Q: What is a finite dimensional Q-vector space?

15/44



Categorical abstraction

Q: What is a finite dimensional Q-vector space?
A: An object in the category of finite dim. Q-vector spaces.

15/44



Categorical abstraction

Q: What is a finite dimensional Q-vector space?
A: An object in the category of finite dim. Q-vector spaces.
Q: What is the category of finite dimensional Q-vector spaces?

15/44



Categorical abstraction

Q: What is a finite dimensional Q-vector space?
A: An object in the category of finite dim. Q-vector spaces.
Q: What is the category of finite dimensional Q-vector spaces?

matg =~ vecq

15/44



Categorical abstraction

Q: What is a finite dimensional Q-vector space?
A: An object in the category of finite dim. Q-vector spaces.
Q: What is the category of finite dimensional Q-vector spaces?

matg =~ vecq

matg is a computerfriendly model of vecg.

15/44
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Q: What is a finite dimensional Q-vector space?
A: An object in the category of finite dim. Q-vector spaces.
Q: What is the category of finite dimensional Q-vector spaces?

matg =~ vecq
matg is a computerfriendly model of vecg.

We want to use categories to model computational contexts instead
of “isolated” objects.
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K

ker A B’
v @
ker A B

L = KernelLift(¢,a o #)

This term may be interpreted in other contexts as well.
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The language of category theory

KernelObject
A O KernelEmbedding
KernelLift
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An introduction to finitely presented modules

Let R be aring.

Definition
A (left) R-module M is called finitely presented if there exist
@ n,m e Ny,

@r,...,me R™",
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modR

with R-linear maps as morphisms.

Computerfriendly model?
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Applying the organizing principle

Goal: create computerfriendly model fpresg of modpg.

What we need

@ Data structures
@ objects
@ morphisms
© Algorithms
e composition
o identities

o KernelObject
.-
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Data structures: objects
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Data structures: morphisms

Deciding well-definedness and being zero of morphisms in fpresg
requires finding particular solutions of inhomogeneous linear systems.

Ring | Algorithms
Q Gauss
Z Hermite
Q[x, y, z|] | Buchberger
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Kernels

We cannot expect kernels to exist in fpresg for all rings:

Example
R:=k[Z,X;|ieN]/(ZX;|i € N).Then

a:R—R:r—2Z-r

has

ker(a) = (X; | i € N).
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Theorem
Let R be a ring equipped with the following algorithm:
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Kernels

Theorem
Let R be a ring equipped with the following algorithm:

@ Input: Ae R™",

@ Output: S € RS*™ s.1. the rows of S generate the row kernel of A.
Then we have an algorithm for computing

@ KernelObject

@ KernelEmbedding

in fpresg.

Can you prove this theorem?
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Categorical abstraction is a powerful organizing principle and
computational tool.

e Why is it a computational tool?
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@ 7; := ProjectionInFactorOfDirectSum ((My, M) , i), i = 1,2
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Translation to CAP

7j := ProjectionInFactorOfDirectSum ((My, M) , i), i = 1,2
@Y i=11 0T —lpOT2

k := KernelEmbedding ()

Y =1l40T{OK
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phi := lambda - PostCompose( iota2, pi2 );

k := KernelEmbedding ()

YI=1{0M 0K
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Translation to CAP

7j := ProjectionInFactorOfDirectSum ((My, Ma) , i), i = 1,2
pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );

@Y i=11 0T —lpOT2
lambda := PostCompose( iotal, pil );
phi := lambda - PostCompose( iota2, pi2 );

 := KernelEmbedding ()
kappa := KernelEmbedding( phi );

YI=1{0M 0K
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Translation to CAP

7j := ProjectionInFactorOfDirectSum ((My, Ma) , i), i = 1,2
pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
@Y i=11 0T —lpOT2
lambda := PostCompose( iotal, pil );
phi := lambda - PostCompose( iota2, pi2 );

 := KernelEmbedding ()
kappa := KernelEmbedding( phi );

Yi=1{0M OK
gamma := PostCompose( lambda, kappa );

40/44



Translation to CAP

pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
lambda := PostCompose( iotal, pil );

phi := lambda - PostCompose( iota2, pi2 );

kappa := KernelEmbedding( phi );

gamma := PostCompose( lambda, kappa );
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Translation to CAP

pil := ProjectionInFactorOfDirectSum( [ M1, M2 1, 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 1, 2 );
lambda := PostCompose( iotal, pil );

phi := lambda - PostCompose( iota2, pi2 );

kappa := KernelEmbedding( phi );

gamma := PostCompose( lambda, kappa );
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Translation to CAP

IntersectionSubobjects := function( iotal, iotaz2 )
pil := ProjectionInFactorOfDirectSum( [ M1, M2 1, 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 1, 2 );
lambda := PostCompose( iotal, pil );
phi := lambda - PostCompose( iota2, piz2 );
kappa := KernelEmbedding( phi );
gamma := PostCompose ( lambda, kappa );
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Translation to CAP

IntersectionSubobjects := function( iotal, iotaz2 )
M1 := Source( iotal );
M2 := Source( iota2 );
pil := ProjectionInFactorOfDirectSum( [ M1, M2 1, 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 1, 2 );
lambda := PostCompose( iotal, pil );
phi := lambda - PostCompose( iota2, piz2 );
kappa := KernelEmbedding( phi );
gamma := PostCompose ( lambda, kappa );
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Translation to CAP

IntersectionSubobjects := function( iotal, iotaz2 )
M1 := Source( iotal );
M2 := Source( iota2 );
pil := ProjectionInFactorOfDirectSum( [ M1, M2 1, 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 1, 2 );
lambda := PostCompose( iotal, pil );
phi := lambda - PostCompose( iota2, piz2 );
kappa := KernelEmbedding( phi );
gamma := PostCompose ( lambda, kappa );
return gamma;
end;
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Translation to CAP

IntersectionSubobjects := function( iotal, iotaz2 )

local M1, M2, pil, pi2, lambda, phi, kappa, gamma;

M1 := Source( iotal );

M2 := Source( iota2 );

pil := ProjectionInFactorOfDirectSum( [ M1, M2 1, 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 1, 2 );
lambda := PostCompose( iotal, pil );

phi := lambda - PostCompose( iota2, piz2 );

kappa := KernelEmbedding( phi );

gamma := PostCompose ( lambda, kappa );

return gamma;
end;
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Computing the intersection

Compute the intersection in matg of

(110 (1 0 1

“=1o0 1 1 2=\ 1 1 0
Aﬂ” ﬁv > e
I

2 3 2
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Computing the intersection

Compute the intersection in matg of

(110 /10 1
“=1o0 1 1 2=\ 1 1 0

M; < N > Mo

Il I Il

2 3 2
gap> gamma := IntersectionOfSubobject( iotal, iota2 );

<A morphism in the category of matrices over Q>
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Computing the intersection

Compute the intersection in matg of

(110 /10 1
“=1o0 1 1 2=\ 1 1 0

M; < N > Mo

Il I Il

2 3 2
gap> gamma := IntersectionOfSubobject( iotal, iota2 );

<A morphism in the category of matrices over Q>

gap> Display( gamma ) ;
rt 1, 1, 01]

A morphism in the category of matrices over Q
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Computing the intersection

The same algorithm can be applied in fpresp
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Computing the intersection

The same algorithm can be applied in fpresg (your turn).
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AP packages

IntrinsicCategories
(CategoriesWithAmbiemObjects AttributeCategory Actions ]
(LinearAIgebra)(—(GroupRepresentations)(—(lnternalExteriorAIgebra)
I

(ComplexesAndFiIteredObjecls €

(GeneralizedMorphisms)(—(HomologicaIAIgebra)
(ModuIePresentations)(—(GradedModuIePresentations)

homalg2

MotivesForBiArrangements
HomotopyCategories

(Bicomplexes

ToricSheaves

complex] (CategoryOfProjectiveGradedObjects](—

StableCategories PresentationCategory
FrobeniusCategories (PresentationsByProjectiveGradedModuIes)
TriangulatedCategories

Bialgebroids

FreydCategories

FunctorCategories
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Categorical abstraction is a powerful organizing principle and
computational tool.
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