Abstract category theory

Abstract category theory

Concrete computations in computer algebra

Abstract category theory

Concrete computations in computer algebra

Abstract category theory

Concrete computations in computer algebra

Categorical abstraction

Abstract category theory

Concrete computations in computer algebra

Categorical abstraction is a powerful

Abstract category theory

Concrete computations in computer algebra

Categorical abstraction is a powerful organizing principle

Abstract category theory

Concrete computations in computer algebra

Category theory in computer algebra

Sebastian Posur

November 20, 2018

Categorical abstraction is a powerful organizing principle and computational tool.

What is categorical abstraction?

- What is categorical abstraction?
- 2 How can it be used as an organizing priniciple?

- What is categorical abstraction?
- 2 How can it be used as an organizing priniciple?
- Why is it a computational tool?

- What is categorical abstraction?
- 2 How can it be used as an organizing priniciple?
- Why is it a computational tool?

Definition

A category $\ensuremath{\mathcal{A}}$ consists of the following data:

Definition

A category $\ensuremath{\mathcal{A}}$ consists of the following data:

ullet Objects: a class $\mathrm{Obj}_{\mathcal{A}}$

В

Definition

A category \mathcal{A} consists of the following data:

- Objects: a class Obj_A
- Morphisms: a family of sets $Hom_{\mathcal{A}}(A, B)$, where $A, B \in Obj_{\mathcal{A}}$

A B C

Definition

A category \mathcal{A} consists of the following data:

- Objects: a class Obj_A
- Morphisms: a family of sets $Hom_{\mathcal{A}}(A, B)$, where $A, B \in Obj_{\mathcal{A}}$

$$A \xrightarrow{\alpha} B$$

Definition

- Objects: a class Obj_A
- Morphisms: a family of sets $Hom_{\mathcal{A}}(A,B)$, where $A,B\in Obj_{\mathcal{A}}$

$$A \xrightarrow{\alpha} B \xrightarrow{\beta} C$$

Definition

- Objects: a class Obj_A
- Morphisms: a family of sets $Hom_{\mathcal{A}}(A, B)$, where $A, B \in Obj_{\mathcal{A}}$
- Composition: for $A, B, C \in \mathrm{Obj}_{\mathcal{A}}$, a function
 - $\circ : \operatorname{\mathsf{Hom}}_{\mathcal{A}}(B,C) \times \operatorname{\mathsf{Hom}}_{\mathcal{A}}(A,B) \to \operatorname{\mathsf{Hom}}_{\mathcal{A}}(A,C)$ (assoc.)

$$A \xrightarrow{\alpha} B \xrightarrow{\beta} C$$

Definition

- Objects: a class Obj_A
- Morphisms: a family of sets $Hom_{\mathcal{A}}(A, B)$, where $A, B \in Obj_{\mathcal{A}}$
- Composition: for $A,B,C\in \mathrm{Obj}_{\mathcal{A}},$ a function
 - $\circ : \operatorname{\mathsf{Hom}}_{\mathcal{A}}(B,C) \times \operatorname{\mathsf{Hom}}_{\mathcal{A}}(A,B) \to \operatorname{\mathsf{Hom}}_{\mathcal{A}}(A,C)$ (assoc.)

Definition

- Objects: a class Obj_A
- Morphisms: a family of sets $Hom_{\mathcal{A}}(A, B)$, where $A, B \in Obj_{\mathcal{A}}$
- **Composition**: for $A, B, C \in \text{Obj}_{\mathcal{A}}$, a function ∘ : $\text{Hom}_{\mathcal{A}}(B, C) \times \text{Hom}_{\mathcal{A}}(A, B) \rightarrow \text{Hom}_{\mathcal{A}}(A, C)$ (assoc.)
- **Neutral elements**: $id_A \in Hom_A(A, A)$ (neutral w.r.t. composition)

Definition

- Objects: a class Obj_A
- Morphisms: a family of sets $Hom_{\mathcal{A}}(A, B)$, where $A, B \in Obj_{\mathcal{A}}$
- **Composition**: for $A, B, C \in \text{Obj}_{\mathcal{A}}$, a function ∘ : $\text{Hom}_{\mathcal{A}}(B, C) \times \text{Hom}_{\mathcal{A}}(A, B) \rightarrow \text{Hom}_{\mathcal{A}}(A, C)$ (assoc.)
- **Neutral elements**: $id_A \in Hom_A(A, A)$ (neutral w.r.t. composition)

Definition

- Objects: a class Obj_A
- Morphisms: a family of sets $Hom_{\mathcal{A}}(A, B)$, where $A, B \in Obj_{\mathcal{A}}$
- **Composition**: for $A, B, C \in \text{Obj}_{\mathcal{A}}$, a function ∘ : $\text{Hom}_{\mathcal{A}}(B, C) \times \text{Hom}_{\mathcal{A}}(A, B) \rightarrow \text{Hom}_{\mathcal{A}}(A, C)$ (assoc.)
- **Neutral elements**: $id_A \in Hom_A(A, A)$ (neutral w.r.t. composition)

• A and B are isomorphic.

- A and B are isomorphic.
- Notation: $A \cong B$ or $A \simeq B$.

- A and B are isomorphic.
- Notation: $A \cong B$ or $A \simeq B$.
- α is an isomorphism with inverse β .

- A and B are isomorphic.
- Notation: $A \cong B$ or $A \simeq B$.
- α is an isomorphism with inverse β .
- β is an isomorphism with inverse α .

- A and B are isomorphic.
- Notation: $A \cong B$ or $A \simeq B$.
- α is an isomorphism with inverse β .
- β is an isomorphism with inverse α .

Probably the most important notion in category theory.

Sets

Sets

 $\bullet \ \mathrm{Obj}_{Sets} := \big\{ \mathsf{all} \ \mathsf{sets} \big\}$

Sets

- $\bullet \ \mathrm{Obj}_{Sets} := \{ \mathsf{all} \ \mathsf{sets} \}$
- $Hom_{Sets}(M, N) := \{maps from M to N\}$

Sets

- $\bullet \ \mathrm{Obj}_{\mathrm{Sets}} := \big\{ \mathsf{all} \ \mathsf{sets} \big\}$
- $\mathsf{Hom}_{\mathsf{Sets}}(M, N) := \{\mathsf{maps} \; \mathsf{from} \; M \; \mathsf{to} \; N\}$
- o given by composition of maps

Example: Sets

Sets

- $\bullet \ \mathrm{Obj}_{\mathrm{Sets}} := \big\{ \mathsf{all} \ \mathsf{sets} \big\}$
- $\mathsf{Hom}_{\mathsf{Sets}}(M, N) := \{\mathsf{maps} \mathsf{ from } M \mathsf{ to } N\}$
- o given by composition of maps
- \bullet id_M : $M \longrightarrow M$: $m \mapsto m$

Example: Sets

Sets

- \bullet Obj_{Sets} := {all sets}
- $\mathsf{Hom}_{\mathsf{Sets}}(M, N) := \{\mathsf{maps} \mathsf{ from } M \mathsf{ to } N\}$
- o given by composition of maps
- \bullet id_M : $M \longrightarrow M$: $m \mapsto m$

isomorphisms

Example: Sets

Sets

- \bullet Obj_{Sets} := {all sets}
- $\mathsf{Hom}_{\mathsf{Sets}}(M, N) := \{\mathsf{maps} \mathsf{ from } M \mathsf{ to } N\}$
- o given by composition of maps
- \bullet id_M : $M \longrightarrow M$: $m \mapsto m$

isomorphisms = bijections

Rels

 $\bullet \ \mathrm{Obj}_{Rels} := \big\{ \mathsf{all} \ \mathsf{sets} \big\}$

- $Obj_{Rels} := \{all sets\}$
- $\mathsf{Hom}_{\mathsf{Rels}}(M,N) := \{\mathsf{relations}\;\mathsf{from}\;M\;\mathsf{to}\;N,\,\mathsf{i.e.},\,\mathsf{subsets}\;\mathsf{of}\;M\times N\}$

- \bullet Obj_{Rels} := {all sets}
- $\mathsf{Hom}_{\mathsf{Rels}}(M,N) := \{\mathsf{relations}\;\mathsf{from}\;M\;\mathsf{to}\;N,\,\mathsf{i.e.},\,\mathsf{subsets}\;\mathsf{of}\;M \times N\}$
- o given by composition of relations

- \bullet Obj_{Rels} := {all sets}
- $\mathsf{Hom}_{\mathsf{Rels}}(M, N) := \{\mathsf{relations} \; \mathsf{from} \; M \; \mathsf{to} \; N, \, \mathsf{i.e.}, \, \mathsf{subsets} \; \mathsf{of} \; M \times N \}$
- o given by composition of relations

$$A \xrightarrow{f \subseteq A \times B} B \xrightarrow{g \subseteq B \times C} C$$

- \bullet Obj_{Rels} := {all sets}
- $\mathsf{Hom}_{\mathsf{Rels}}(M, N) := \{\mathsf{relations} \; \mathsf{from} \; M \; \mathsf{to} \; N, \, \mathsf{i.e.}, \, \mathsf{subsets} \; \mathsf{of} \; M \times N \}$
- o given by composition of relations

$$g \circ f := \left\{ (a, c) \in A \times C \mid \exists b \in B : (a, b) \in f, (b, c) \in g \right\}$$

$$A \xrightarrow{f \subseteq A \times B} B \xrightarrow{g \subseteq B \times C} C$$

- $Obj_{Rels} := \{all sets\}$
- $\mathsf{Hom}_{\mathsf{Rels}}(M,N) := \{\mathsf{relations} \; \mathsf{from} \; M \; \mathsf{to} \; N, \, \mathsf{i.e.}, \, \mathsf{subsets} \; \mathsf{of} \; M \times N \}$
- o given by composition of relations
- $id_M := \{(m, m) \mid m \in M\} \subset M \times M$

$$g \circ f := \left\{ (a, c) \in A \times C \mid \exists b \in B : (a, b) \in f, (b, c) \in g \right\}$$

$$A \xrightarrow{f \subseteq A \times B} B \xrightarrow{g \subseteq B \times C} C$$

Let G be a group.

• $Obj_G := \{*\}$ (any singleton)

- $Obj_G := \{*\}$ (any singleton)
- $Hom_G(*,*) := G$

- $Obj_G := \{*\}$ (any singleton)
- $\text{Hom}_{G}(*,*) := G$
- o given by group multiplication

- $Obj_G := \{*\}$ (any singleton)
- $Hom_G(*,*) := G$
- o given by group multiplication
- id_∗ := identity element in G

Let G be a group.

- $Obj_G := \{*\}$ (any singleton)
- $Hom_G(*,*) := G$
- o given by group multiplication
- id_{*} := identity element in *G*

isomorphisms

Let G be a group.

- $Obj_G := \{*\}$ (any singleton)
- $Hom_G(*,*) := G$
- o given by group multiplication
- id_{*} := identity element in *G*

isomorphisms = all elements in G

 $\text{vec}_{\mathbb{Q}}$

 $\bullet \ \mathrm{Obj}_{\mathrm{vec}_{\mathbb{D}}} := \big\{ \mathrm{all} \ \mathrm{finite} \ \mathrm{dimensional} \ \mathbb{Q}\text{-vector spaces} \big\}$

- $\bullet \ \mathrm{Obj}_{\mathrm{vec}_{\mathbb{Q}}} := \big\{ \text{all finite dimensional } \mathbb{Q}\text{-vector spaces} \big\}$
- $\mathsf{Hom}_{\mathsf{vec}_{\mathbb{Q}}}(\mathit{V}, \mathit{W}) := \{\mathbb{Q} \text{-linear maps from } \mathit{V} \mathsf{ to } \mathit{W}\}$

- $\bullet \ \mathrm{Obj}_{vec_{\mathbb{Q}}} := \big\{ \text{all finite dimensional } \mathbb{Q}\text{-vector spaces} \big\}$
- ullet Hom $_{\mathrm{vec}_{\mathbb{Q}}}(\mathit{V},\mathit{W}):=ig\{\mathbb{Q} ext{-linear maps from }\mathit{V} ext{ to } \mathit{W}ig\}$
- o given by composition of maps

- $\bullet \ \mathrm{Obj}_{\mathrm{vec}_{\mathbb{O}}} := \big\{ \text{all finite dimensional } \mathbb{Q}\text{-vector spaces} \big\}$
- ullet Hom $_{\mathrm{vec}_{\mathbb{Q}}}(\mathit{V},\mathit{W}) := \big\{ \mathbb{Q} \text{-linear maps from } \mathit{V} \text{ to } \mathit{W} \big\}$
- o given by composition of maps
- \bullet id_M : $M \longrightarrow M$: $m \mapsto m$

$\text{vec}_{\mathbb{Q}}$

- $\bullet \ \mathrm{Obj}_{\mathrm{vec}_{\mathbb{O}}} := \big\{ \text{all finite dimensional } \mathbb{Q}\text{-vector spaces} \big\}$
- $\mathsf{Hom}_{\mathsf{vec}_{\mathbb{Q}}}(\mathit{V}, \mathit{W}) := \{\mathbb{Q} \text{-linear maps from } \mathit{V} \mathsf{ to } \mathit{W}\}$
- o given by composition of maps
- \bullet id_M : $M \longrightarrow M : m \mapsto m$

isomorphisms

$\text{vec}_{\mathbb{Q}}$

- $\bullet \ \mathrm{Obj}_{\mathrm{vec}_{\mathbb{Q}}} := \big\{ \text{all finite dimensional } \mathbb{Q}\text{-vector spaces} \big\}$
- $\mathsf{Hom}_{\mathsf{vec}_{\mathbb{Q}}}(\mathit{V}, \mathit{W}) := \{\mathbb{Q} \text{-linear maps from } \mathit{V} \mathsf{ to } \mathit{W}\}$
- o given by composition of maps
- \bullet id_M : $M \longrightarrow M$: $m \mapsto m$

 $isomorphisms = \mathbb{Q}\text{-linear bijections}$

 $\text{mat}_{\mathbb{Q}}$

 $\text{mat}_{\mathbb{Q}}$

$$\bullet \ \operatorname{Obj}_{\text{mat}_{\mathbb{Q}}} := \mathbb{N}_0$$

 $\mathrm{mat}_{\mathbb{Q}}$

$$\bullet \ \mathrm{Obj}_{\text{mat}_{\mathbb{Q}}} := \mathbb{N}_0$$

•
$$\mathsf{Hom}_{\mathrm{vec}_{\mathbb{Q}}}(m,n) := \mathbb{Q}^{m \times n}$$

 $\mathrm{mat}_{\mathbb{Q}}$

$$\bullet \ \mathrm{Obj}_{\text{mat}_{\mathbb{Q}}} := \mathbb{N}_0$$

- $\mathsf{Hom}_{\mathsf{vec}_\mathbb{Q}}(m,n) := \mathbb{Q}^{m \times n}$
- $A \circ B := B \cdot A$

 $\mathrm{mat}_{\mathbb{Q}}$

$$\bullet \ \mathrm{Obj}_{\text{mat}_{\mathbb{Q}}} := \mathbb{N}_0$$

- $\mathsf{Hom}_{\mathsf{vec}_{\mathbb{Q}}}(m,n) := \mathbb{Q}^{m \times n}$
- $A \circ B := B \cdot A$
- id_m : the $m \times m$ identity matrix

 $\mathrm{mat}_{\mathbb{Q}}$

$$\bullet \ \mathrm{Obj}_{\text{mat}_{\mathbb{O}}} := \mathbb{N}_0$$

•
$$\mathsf{Hom}_{\mathrm{vec}_{\mathbb{O}}}(m,n) := \mathbb{Q}^{m \times n}$$

•
$$A \circ B := B \cdot A$$

• id_m : the $m \times m$ identity matrix

isomorphisms

$mat_{\mathbb{Q}}$

$$\bullet \ \mathrm{Obj}_{\text{mat}_{\mathbb{Q}}} := \mathbb{N}_0$$

•
$$\mathsf{Hom}_{\mathrm{vec}_{\mathbb{Q}}}(m,n) := \mathbb{Q}^{m \times n}$$

•
$$A \circ B := B \cdot A$$

• id_m : the $m \times m$ identity matrix

 $isomorphisms = invertible \ matrices$

When are two categories "the same" in a categorical way?

When are two categories "the same" in a categorical way?

 \mathcal{B}

[

When are two categories "the same" in a categorical way?

А

 \mathcal{B}

 $\bullet \ F: \mathrm{Obj}_{\mathcal{A}} \longrightarrow \mathrm{Obj}_{\mathcal{B}}$

When are two categories "the same" in a categorical way?

$$A \xrightarrow{F} \mathcal{B}$$

ullet $F: \mathrm{Obj}_{\mathcal{A}} \longrightarrow \mathrm{Obj}_{\mathcal{B}}$

When are two categories "the same" in a categorical way?

$$\mathcal{A} \xrightarrow{\qquad \qquad F} \mathcal{B}$$

ullet $F: \mathrm{Obj}_{\mathcal{A}} \longrightarrow \mathrm{Obj}_{\mathcal{B}}$

When are two categories "the same" in a categorical way?

$$A \xrightarrow{F} \mathcal{B}$$

$$A \longmapsto FA$$

ullet $F: \mathrm{Obj}_{\mathcal{A}} \longrightarrow \mathrm{Obj}_{\mathcal{B}}$

$$A \xrightarrow{F} \mathcal{B}$$

$$A \longmapsto FA$$

- $F : \mathrm{Obj}_{\mathcal{A}} \longrightarrow \mathrm{Obj}_{\mathcal{B}}$
- $\bullet \; \operatorname{\mathsf{Hom}}_{\mathcal{A}}(A,A') \longrightarrow \operatorname{\mathsf{Hom}}_{\mathcal{B}}(\mathit{FA},\mathit{FA}')$

$$A \xrightarrow{F} \mathcal{B}$$

- ullet $F: \mathrm{Obj}_{\mathcal{A}} \longrightarrow \mathrm{Obj}_{\mathcal{B}}$
- $\operatorname{\mathsf{Hom}}_{\mathcal{A}}(A,A') \longrightarrow \operatorname{\mathsf{Hom}}_{\mathcal{B}}(FA,FA')$

$$\begin{array}{ccc}
A & & & FA \\
\alpha \downarrow & & & \downarrow F\alpha \\
A' & & FA'
\end{array}$$

- ullet $F: \mathrm{Obj}_{\mathcal{A}} \longrightarrow \mathrm{Obj}_{\mathcal{B}}$
- $\bullet \; \operatorname{\mathsf{Hom}}_{\mathcal{A}}(A,A') \longrightarrow \operatorname{\mathsf{Hom}}_{\mathcal{B}}(\mathit{FA},\mathit{FA}')$

$$A \xrightarrow{F} \mathcal{B}$$

- ullet $F: \mathrm{Obj}_{\mathcal{A}} \longrightarrow \mathrm{Obj}_{\mathcal{B}}$
- $\operatorname{Hom}_{\mathcal{A}}(A, A') \longrightarrow \operatorname{Hom}_{\mathcal{B}}(FA, FA')$ (respects id and \circ , bijection)

- ullet $F: \mathrm{Obj}_{\mathcal{A}} \longrightarrow \mathrm{Obj}_{\mathcal{B}}$
- $\operatorname{Hom}_{\mathcal{A}}(A,A') \longrightarrow \operatorname{Hom}_{\mathcal{B}}(FA,FA')$ (respects id and \circ , bijection)
- ∀B ∈ B

$$A \xrightarrow{F} \mathcal{B}$$

- ullet $F: \mathrm{Obj}_{\mathcal{A}} \longrightarrow \mathrm{Obj}_{\mathcal{B}}$
- $\operatorname{Hom}_{\mathcal{A}}(A,A') \longrightarrow \operatorname{Hom}_{\mathcal{B}}(FA,FA')$ (respects id and \circ , bijection)
- ∀B ∈ B

When are two categories "the same" in a categorical way?

$$A \xrightarrow{F} B$$

В

- $F: \mathrm{Obj}_{\mathcal{A}} \longrightarrow \mathrm{Obj}_{\mathcal{B}}$
- $\bullet \ \operatorname{Hom}_{\mathcal{A}}(A,A') \longrightarrow \operatorname{Hom}_{\mathcal{B}}(\mathit{FA},\mathit{FA}') \quad \text{ (respects id and } \circ, \operatorname{bijection)}$
- ∀B ∈ B

When are two categories "the same" in a categorical way?

$$A \xrightarrow{F} \mathcal{B}$$

В

- $F: \mathrm{Obj}_{\mathcal{A}} \longrightarrow \mathrm{Obj}_{\mathcal{B}}$
- $\operatorname{\mathsf{Hom}}_{\mathcal{A}}(A,A') \longrightarrow \operatorname{\mathsf{Hom}}_{\mathcal{B}}(FA,FA')$ (respects id and \circ , bijection)
- $\forall B \in \mathcal{B} \quad \exists A \in \mathcal{A} :$

$$A \xrightarrow{F} B$$

- $F : \mathrm{Obj}_{\mathcal{A}} \longrightarrow \mathrm{Obj}_{\mathcal{B}}$
- $\bullet \ \operatorname{Hom}_{\mathcal{A}}(A,A') \longrightarrow \operatorname{Hom}_{\mathcal{B}}(\mathit{FA},\mathit{FA}') \quad \text{ (respects id and } \circ, \operatorname{bijection)}$
- $\forall B \in \mathcal{B}$ $\exists A \in \mathcal{A}$:

$$\begin{array}{ccc}
A & & F \\
& & & FA \\
A & & B
\end{array}$$

- $F : \mathrm{Obj}_{\mathcal{A}} \longrightarrow \mathrm{Obj}_{\mathcal{B}}$
- $\bullet \; \operatorname{\mathsf{Hom}}_{\mathcal{A}}(A,A') \longrightarrow \operatorname{\mathsf{Hom}}_{\mathcal{B}}(\mathit{FA},\mathit{FA}') \quad \text{ (respects id and } \circ, \operatorname{\mathsf{bijection}})$
- $\forall B \in \mathcal{B}$ $\exists A \in \mathcal{A}$:

$$\begin{array}{ccc}
A & \xrightarrow{F} & \mathcal{B} \\
A & & \stackrel{}{\downarrow} & & \\
A & & B
\end{array}$$

- $F : \mathrm{Obj}_{\mathcal{A}} \longrightarrow \mathrm{Obj}_{\mathcal{B}}$
- $\bullet \; \operatorname{\mathsf{Hom}}_{\mathcal{A}}(A,A') \longrightarrow \operatorname{\mathsf{Hom}}_{\mathcal{B}}(\mathit{FA},\mathit{FA}') \quad \text{(respects id and } \circ, \text{ bijection)}$
- $\forall B \in \mathcal{B} \quad \exists A \in \mathcal{A} :$

$$\begin{array}{ccc}
A & & F & \\
& & & \mathcal{B} \\
A & & & B
\end{array}$$

- ullet $F: \mathrm{Obj}_{\mathcal{A}} \longrightarrow \mathrm{Obj}_{\mathcal{B}}$
- $\bullet \ \operatorname{Hom}_{\mathcal{A}}(A,A') \longrightarrow \operatorname{Hom}_{\mathcal{B}}(FA,FA') \quad \text{(respects id and } \circ, \text{ bijection)}$
- $\forall B \in \mathcal{B}$ $\exists A \in \mathcal{A}$: $FA \simeq B$

$$\begin{array}{ccc}
A & & F & & B \\
& & & \downarrow & & \downarrow \\
A & & & B
\end{array}$$

- $F : \mathrm{Obj}_{\mathcal{A}} \longrightarrow \mathrm{Obj}_{\mathcal{B}}$
- $\bullet \ \operatorname{Hom}_{\mathcal{A}}(A,A') \longrightarrow \operatorname{Hom}_{\mathcal{B}}(\mathit{FA},\mathit{FA}') \quad \text{ (respects id and } \circ, \operatorname{bijection)}$
- $\forall B \in \mathcal{B}$ $\exists A \in \mathcal{A}$: $FA \simeq B$ (essentially surjective)

Let's compare $mat_{\mathbb{O}}$ and $vec_{\mathbb{O}}$.

 $\text{mat}_{\mathbb{Q}}$

 $\text{vec}_{\mathbb{Q}}$

Let's compare $mat_{\mathbb{Q}}$ and $vec_{\mathbb{Q}}$.

 $mat_{\mathbb{O}}$

 $\mathrm{vec}_{\mathbb{Q}}$

 $\bullet \ F: \mathrm{Obj}_{\mathrm{mat}_{\mathbb{Q}}} \longrightarrow \mathrm{Obj}_{\mathrm{vec}_{\mathbb{Q}}}$

Let's compare $mat_{\mathbb{Q}}$ and $vec_{\mathbb{Q}}$.

$$\mathsf{mat}_{\mathbb{Q}} \xrightarrow{\hspace*{1cm} F \hspace*{1cm}} \mathsf{vec}_{\mathbb{Q}}$$

 $\bullet \ \ F: \mathrm{Obj}_{\mathrm{mat}_{\mathbb{Q}}} \longrightarrow \mathrm{Obj}_{\mathrm{vec}_{\mathbb{Q}}}$

Let's compare $mat_{\mathbb{Q}}$ and $vec_{\mathbb{Q}}$.

$$\mathsf{mat}_{\mathbb{Q}} \xrightarrow{\hspace*{1cm} F \hspace*{1cm}} \mathsf{vec}_{\mathbb{Q}}$$

m

$$\bullet \ \ F: \mathrm{Obj}_{mat_{\mathbb{Q}}} \longrightarrow \mathrm{Obj}_{vec_{\mathbb{Q}}}$$

Let's compare $mat_{\mathbb{Q}}$ and $vec_{\mathbb{Q}}$.

$$\begin{array}{ccc}
 & F & & \operatorname{vec}_{\mathbb{Q}} \\
 & m & & \longmapsto & \mathbb{Q}^{1 \times m}
\end{array}$$

 $\bullet \ F: \mathrm{Obj}_{\mathrm{mat}_{\mathbb{Q}}} \longrightarrow \mathrm{Obj}_{\mathrm{vec}_{\mathbb{Q}}}$

$$\begin{array}{ccc}
 & F & & \text{vec}_{\mathbb{Q}} \\
 & m & & & \mathbb{Q}^{1 \times m}
\end{array}$$

- $\bullet \ F: \mathrm{Obj}_{\mathrm{mat}_{\mathbb{Q}}} \longrightarrow \mathrm{Obj}_{\mathrm{vec}_{\mathbb{Q}}}$
- $\bullet \; \mathsf{Hom}_{\mathrm{mat}_{\mathbb{Q}}}(m,n) \longrightarrow \mathsf{Hom}_{\mathrm{vec}_{\mathbb{Q}}}(\mathbb{Q}^{1\times m},\mathbb{Q}^{1\times n})$

$$\mathsf{mat}_{\mathbb{Q}} \xrightarrow{\hspace*{1cm} F \hspace*{1cm}} \mathsf{vec}_{\mathbb{Q}}$$

$$(a_{ij})_{ij} \downarrow n$$

- $\bullet \ F: \mathrm{Obj}_{\mathrm{mat}_{\mathbb{Q}}} \longrightarrow \mathrm{Obj}_{\mathrm{vec}_{\mathbb{Q}}}$
- $\bullet \; \mathsf{Hom}_{\mathrm{mat}_{\mathbb{Q}}}(m,n) \longrightarrow \mathsf{Hom}_{\mathrm{vec}_{\mathbb{Q}}}(\mathbb{Q}^{1\times m},\mathbb{Q}^{1\times n})$

$$\operatorname{mat}_{\mathbb{Q}} \longrightarrow \operatorname{vec}_{\mathbb{Q}}$$

$$(a_{ij})_{ij}$$
 n
 $\mathbb{Q}^{1\times m}$
 $\downarrow v \mapsto v \cdot (a_{ij})_{ij}$
 $\mathbb{Q}^{1\times n}$

- $\bullet \ F: \mathrm{Obj}_{\mathrm{mat}_{\mathbb{Q}}} \longrightarrow \mathrm{Obj}_{\mathrm{vec}_{\mathbb{Q}}}$
- $\bullet \; \mathsf{Hom}_{\mathsf{mat}_{\mathbb{Q}}}(\textit{m},\textit{n}) \longrightarrow \mathsf{Hom}_{\mathsf{vec}_{\mathbb{Q}}}(\mathbb{Q}^{1\times \textit{m}},\mathbb{Q}^{1\times \textit{n}})$

$$\operatorname{mat}_{\mathbb{Q}} \longrightarrow \operatorname{vec}_{\mathbb{Q}}$$

$$(a_{ij})_{ij}$$
 \longrightarrow
 $\mathbb{Q}^{1 \times m}$
 $\downarrow v \mapsto v \cdot (a_{ij})_{ij}$
 $\downarrow v \mapsto v \cdot (a_{ij})_{ij}$

- $\bullet \ F: \mathrm{Obj}_{\mathrm{mat}_{\mathbb{Q}}} \longrightarrow \mathrm{Obj}_{\mathrm{vec}_{\mathbb{Q}}}$
- $\bullet \; \operatorname{\mathsf{Hom}}_{\operatorname{mat}_{\mathbb{Q}}}(m,n) \longrightarrow \operatorname{\mathsf{Hom}}_{\operatorname{vec}_{\mathbb{Q}}}(\mathbb{Q}^{1\times m},\mathbb{Q}^{1\times n}) \quad \text{ (respects id and } \circ)$

$$\operatorname{mat}_{\mathbb{Q}} \longrightarrow \operatorname{vec}_{\mathbb{Q}}$$

$$\begin{array}{ccc} & & & & \mathbb{Q}^{1 \times m} \\ \left(a_{ij}\right)_{ij} & & \longmapsto & & \bigvee_{\mathbb{Q}^{1 \times n}} v \mapsto v \cdot \left(a_{ij}\right)_{ij} \\ & & & & \mathbb{Q}^{1 \times n} \end{array}$$

- $\bullet \ \ F: \mathrm{Obj}_{\mathrm{mat}_{\mathbb{Q}}} \longrightarrow \mathrm{Obj}_{\mathrm{vec}_{\mathbb{Q}}}$
- $\bullet \; \operatorname{\mathsf{Hom}}_{\operatorname{mat}_{\mathbb{Q}}}(m,n) \longrightarrow \operatorname{\mathsf{Hom}}_{\operatorname{vec}_{\mathbb{Q}}}(\mathbb{Q}^{1\times m},\mathbb{Q}^{1\times n}) \quad \text{ (respects id and } \circ)$
- $\forall B \in \text{vec}_{\mathbb{O}}$

$$\mathsf{mat}_{\mathbb{Q}} \xrightarrow{\hspace*{1cm} F \hspace*{1cm}} \mathsf{vec}_{\mathbb{Q}}$$

- ullet $F: \mathrm{Obj}_{\mathrm{mat}_{\mathbb{O}}} \longrightarrow \mathrm{Obj}_{\mathrm{vec}_{\mathbb{O}}}$
- $\bullet \; \operatorname{\mathsf{Hom}}_{\operatorname{mat}_{\mathbb{Q}}}(m,n) \longrightarrow \operatorname{\mathsf{Hom}}_{\operatorname{vec}_{\mathbb{Q}}}(\mathbb{Q}^{1\times m},\mathbb{Q}^{1\times n}) \quad \text{ (respects id and } \circ \text{)}$
- $\forall B \in \text{vec}_{\mathbb{O}}$

Let's compare $mat_{\mathbb{Q}}$ and $vec_{\mathbb{Q}}$.

$$\mathsf{mat}_{\mathbb{Q}} \xrightarrow{\hspace*{1cm} F \hspace*{1cm}} \mathsf{vec}_{\mathbb{Q}}$$

В

- $\bullet \ \ F: \mathrm{Obj}_{\mathrm{mat}_{\mathbb{Q}}} \longrightarrow \mathrm{Obj}_{\mathrm{vec}_{\mathbb{Q}}}$
- $\bullet \; \operatorname{\mathsf{Hom}}_{\operatorname{mat}_{\mathbb{Q}}}(m,n) \longrightarrow \operatorname{\mathsf{Hom}}_{\operatorname{vec}_{\mathbb{Q}}}(\mathbb{Q}^{1\times m},\mathbb{Q}^{1\times n}) \quad \text{ (respects id and } \circ \text{)}$
- $\forall B \in \text{vec}_{\mathbb{O}}$

Let's compare $\mathrm{mat}_{\mathbb{Q}}$ and $\mathrm{vec}_{\mathbb{Q}}.$

$$\mathsf{mat}_{\mathbb{Q}} \xrightarrow{\hspace*{1cm} F \hspace*{1cm}} \mathsf{vec}_{\mathbb{Q}}$$

В

- $\bullet \ \ F: \mathrm{Obj}_{\mathrm{mat}_{\mathbb{Q}}} \longrightarrow \mathrm{Obj}_{\mathrm{vec}_{\mathbb{Q}}}$
- $\bullet \; \operatorname{\mathsf{Hom}}_{\operatorname{mat}_{\mathbb{Q}}}(m,n) \longrightarrow \operatorname{\mathsf{Hom}}_{\operatorname{vec}_{\mathbb{Q}}}(\mathbb{Q}^{1\times m},\mathbb{Q}^{1\times n}) \quad \text{(respects id and } \circ)$
- $\forall B \in \text{vec}_{\mathbb{O}} \quad \exists m \in \text{mat}_{\mathbb{O}} :$

Let's compare $\mathrm{mat}_{\mathbb{Q}}$ and $\mathrm{vec}_{\mathbb{Q}}.$

$$\mathsf{mat}_{\mathbb{Q}} \xrightarrow{\hspace*{1cm} F \hspace*{1cm}} \mathsf{vec}_{\mathbb{Q}}$$

В

 $\bullet \ F: \mathrm{Obj}_{\mathrm{mat}_{\mathbb{Q}}} \longrightarrow \mathrm{Obj}_{\mathrm{vec}_{\mathbb{Q}}}$

m

- $\bullet \; \operatorname{\mathsf{Hom}}_{\operatorname{mat}_{\mathbb{Q}}}(m,n) \longrightarrow \operatorname{\mathsf{Hom}}_{\operatorname{vec}_{\mathbb{Q}}}(\mathbb{Q}^{1\times m},\mathbb{Q}^{1\times n}) \quad \text{ (respects id and } \circ \text{)}$
- $\forall B \in \text{vec}_{\mathbb{Q}} \quad \exists m \in \text{mat}_{\mathbb{Q}} :$

- ullet $F: \mathrm{Obj}_{\mathrm{mat}_{\mathbb{O}}} \longrightarrow \mathrm{Obj}_{\mathrm{vec}_{\mathbb{O}}}$
- $\bullet \; \operatorname{\mathsf{Hom}}_{\operatorname{mat}_{\mathbb{Q}}}(m,n) \longrightarrow \operatorname{\mathsf{Hom}}_{\operatorname{vec}_{\mathbb{Q}}}(\mathbb{Q}^{1\times m},\mathbb{Q}^{1\times n}) \quad \text{ (respects id and } \circ\text{)}$
- $\forall B \in \text{vec}_{\mathbb{O}} \quad \exists m \in \text{mat}_{\mathbb{O}} :$

- $\bullet \ F: \mathrm{Obj}_{\mathrm{mat}_{\mathbb{Q}}} \longrightarrow \mathrm{Obj}_{\mathrm{vec}_{\mathbb{Q}}}$
- $\bullet \; \operatorname{\mathsf{Hom}}_{\operatorname{mat}_{\mathbb{Q}}}(m,n) \longrightarrow \operatorname{\mathsf{Hom}}_{\operatorname{vec}_{\mathbb{Q}}}(\mathbb{Q}^{1\times m},\mathbb{Q}^{1\times n}) \quad \text{(respects id and } \circ)$
- $\forall B \in \text{vec}_{\mathbb{O}} \quad \exists m \in \text{mat}_{\mathbb{O}} :$

- $\bullet \ F: \mathrm{Obj}_{\mathrm{mat}_{\mathbb{Q}}} \longrightarrow \mathrm{Obj}_{\mathrm{vec}_{\mathbb{Q}}}$
- $\bullet \; \operatorname{\mathsf{Hom}}_{\operatorname{mat}_{\mathbb{Q}}}(m,n) \longrightarrow \operatorname{\mathsf{Hom}}_{\operatorname{vec}_{\mathbb{Q}}}(\mathbb{Q}^{1\times m},\mathbb{Q}^{1\times n}) \quad \text{ (respects id and } \circ\text{)}$
- $\forall B \in \text{vec}_{\mathbb{Q}} \quad \exists m \in \text{mat}_{\mathbb{Q}} : \quad \mathbb{Q}^{1 \times m} \simeq B$

$$\begin{array}{ccc}
 & F & & \operatorname{vec}_{\mathbb{Q}} \\
 & & & & \mathbb{Q}^{1 \times m} \\
 & & & & & \mathbb{Q} \\
 & & & & B
\end{array}$$

- $\bullet \ F: \mathrm{Obj}_{\mathrm{mat}_{\mathbb{Q}}} \longrightarrow \mathrm{Obj}_{\mathrm{vec}_{\mathbb{Q}}}$
- $\bullet \; \mathsf{Hom}_{\mathrm{mat}_{\mathbb{Q}}}(m,n) \longrightarrow \mathsf{Hom}_{\mathrm{vec}_{\mathbb{Q}}}(\mathbb{Q}^{1\times m},\mathbb{Q}^{1\times n}) \quad \text{(respects id and } \circ)$
- $\forall B \in \text{vec}_{\mathbb{Q}}$ $\exists m \in \text{mat}_{\mathbb{Q}} : \mathbb{Q}^{1 \times m} \simeq B$ m = dim(B)

Categorical abstraction

 $\text{mat}_{\mathbb{Q}} \simeq \text{vec}_{\mathbb{Q}}$

Categorical abstraction

$$mat_{\mathbb{Q}} \simeq vec_{\mathbb{Q}}$$

For a category theorist, these two categories look the same.

Categorical abstraction

Q: What is a finite dimensional Q-vector space?

Q: What is a finite dimensional Q-vector space?

A: An object in the **category** of finite dim. Q-vector spaces.

- Q: What is a finite dimensional Q-vector space?
- A: An object in the **category** of finite dim. Q-vector spaces.
- Q: What is the **category** of finite dimensional Q-vector spaces?

Q: What is a finite dimensional Q-vector space?

A: An object in the **category** of finite dim. Q-vector spaces.

Q: What is the **category** of finite dimensional Q-vector spaces?

 $\text{mat}_{\mathbb{Q}} \simeq \text{vec}_{\mathbb{Q}}$

- Q: What is a finite dimensional Q-vector space?
- A: An object in the **category** of finite dim. Q-vector spaces.
- Q: What is the **category** of finite dimensional Q-vector spaces?

 $\text{mat}_{\mathbb{Q}} \simeq \text{vec}_{\mathbb{Q}}$

 $mat_{\mathbb{Q}}$ is a **computerfriendly** model of $vec_{\mathbb{Q}}$.

- Q: What is a finite dimensional Q-vector space?
- A: An object in the **category** of finite dim. Q-vector spaces.
- Q: What is the **category** of finite dimensional Q-vector spaces?

 $\text{mat}_{\mathbb{Q}} \simeq \text{vec}_{\mathbb{Q}}$

 $mat_{\mathbb{Q}}$ is a **computerfriendly** model of $vec_{\mathbb{Q}}$.

We want to use categories to model **computational contexts** instead of "isolated" objects.

Outline

Categorical abstraction is a powerful organizing principle and computational tool.

- What is categorical abstraction?
- 2 How can it be used as an organizing priniciple?
- Why is it a computational tool?

A category becomes computable through

• Data structures for objects and morphisms

- Data structures for *objects* and *morphisms*
- Algorithms to compute the *composition* of morphisms

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms and identity morphisms of objects

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms and identity morphisms of objects

A category becomes computable through

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms and identity morphisms of objects

 $mat_{\mathbb{Q}}$

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms and identity morphisms of objects

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms and identity morphisms of objects

A category becomes computable through

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms and identity morphisms of objects

 $1 \xrightarrow{\qquad \qquad } 2 \xrightarrow{\qquad \qquad } 1$

A category becomes computable through

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms and identity morphisms of objects

 $\text{mat}_{\mathbb{Q}}$

$$1 \xrightarrow{\qquad \qquad \qquad } 2 \xrightarrow{\qquad \qquad \qquad } 1$$

A category becomes computable through

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms and identity morphisms of objects

 $\text{mat}_{\mathbb{Q}}$

A category becomes computable through

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms and identity morphisms of objects

 $\text{mat}_{\mathbb{Q}}$

$$\begin{pmatrix}
1 & 2
\end{pmatrix} \cdot \begin{pmatrix}
3 \\
4
\end{pmatrix} = (11)$$

$$1 \xrightarrow{\left(\begin{array}{c}
1 & 2
\end{array}\right)} 2 \xrightarrow{\left(\begin{array}{c}
3 \\
4
\end{array}\right)} 1$$

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms and identity morphisms of objects

A category becomes computable through

- Data structures for objects and morphisms
- Algorithms to compute the composition of morphisms and identity morphisms of objects

 $\mathrm{mat}_{\mathbb{Q}}$

 $vec_{\mathbb{O}}$ and $mat_{\mathbb{O}}$ are examples of abelian categories.

 $vec_{\mathbb{O}}$ and $mat_{\mathbb{O}}$ are examples of abelian categories.

 $vec_{\mathbb{Q}}$ and $mat_{\mathbb{Q}}$ are examples of abelian categories.

Some categorical operations in abelian categories

 $\bullet \ \oplus : Obj \times Obj \to Obj$

 $vec_{\mathbb{Q}}$ and $mat_{\mathbb{Q}}$ are examples of abelian categories.

- ullet \oplus : Obj imes Obj o Obj
- $+, -: \operatorname{Hom}(A, B) \times \operatorname{Hom}(A, B) \to \operatorname{Hom}(A, B)$

 $vec_{\mathbb{Q}}$ and $mat_{\mathbb{Q}}$ are examples of abelian categories.

- ullet \oplus : Obj imes Obj o Obj
- $+, : \operatorname{\mathsf{Hom}}(A,B) \times \operatorname{\mathsf{Hom}}(A,B) \to \operatorname{\mathsf{Hom}}(A,B)$
- ker : $Hom(A, B) \rightarrow Obj$

 $vec_{\mathbb{Q}}$ and $mat_{\mathbb{Q}}$ are examples of abelian categories.

- ullet \oplus : Obj imes Obj o Obj
- $+, : \operatorname{\mathsf{Hom}}(A,B) \times \operatorname{\mathsf{Hom}}(A,B) \to \operatorname{\mathsf{Hom}}(A,B)$
- ker : $Hom(A, B) \rightarrow Obj$

What do we want from a kernel?

What do we want from a kernel?

Given $\alpha: V \longrightarrow W$ in $vec_{\mathbb{Q}}$.

What do we want from a kernel?

Given $\alpha: V \longrightarrow W$ in $vec_{\mathbb{Q}}$.

$$\ker(\alpha) = \{ v \in V \mid \alpha(v) = 0 \}$$

What do we want from a kernel?

Given $\alpha: V \longrightarrow W$ in $\text{vec}_{\mathbb{Q}}$.

$$\ker(\alpha) = \{ v \in V \mid \alpha(v) = 0 \}$$

$$m \xrightarrow{(a_{ij})_{ij}} r$$

$$\dim (\ker(a_{ij}))$$

$$m \xrightarrow{(a_{ij})_{ij}} r$$

$$\dim \left(\ker(a_{ij}) \right)$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$3 \xrightarrow{} 3 \xrightarrow{} 3$$

Complete understanding about what is mapped to 0.

2

$$3 \xrightarrow{\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}}$$

$$\dim \left(\ker(a_{ij}) \right)$$

$$\begin{pmatrix} 1 & -1 \\ -1 & 1 \\ 1 & -1 \end{pmatrix}$$

Complete understanding about what is mapped to 0.

2

$$\begin{pmatrix}
1 & -1 \\
-1 & 1 \\
1 & -1
\end{pmatrix}$$

Complete understanding about what is mapped to 0.

2

$$3 \xrightarrow{\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}}$$

Let $\varphi \in \text{Hom}(A, B)$.

Let $\varphi \in \text{Hom}(A, B)$.

$$A \xrightarrow{\varphi} B$$

Let $\varphi \in \operatorname{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

$$A \xrightarrow{\varphi} B$$

Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

 \dots one needs an object $\ker \varphi$,

 $\ker \varphi$

$$A \xrightarrow{\varphi} B$$

Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

... one needs an object $\ker \varphi$, its embedding $\kappa = \text{KernelEmbedding}(\varphi)$,

Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

... one needs an object $\ker \varphi$, its embedding $\kappa = \text{KernelEmbedding}(\varphi)$, and for every test morphism τ

Let $\varphi \in \operatorname{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

```
... one needs an object \ker \varphi, its embedding \kappa = \operatorname{KernelEmbedding}(\varphi), and for every test morphism \tau a unique morphism \lambda = \operatorname{KernelLift}(\varphi, \tau)
```


Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

```
... one needs an object \ker \varphi, its embedding \kappa = \operatorname{KernelEmbedding}(\varphi), and for every test morphism \tau a unique morphism \lambda = \operatorname{KernelLift}(\varphi, \tau), such that
```


 $\text{mat}_{\mathbb{Q}}$

Obj :=
$$\mathbb{N}_0$$
, Hom $(m, n) := \mathbb{Q}^{m \times n}$

 $\text{mat}_{\mathbb{Q}}$

Obj :=
$$\mathbb{N}_0$$
, Hom $(m, n) := \mathbb{Q}^{m \times n}$

$$m \xrightarrow{(a_{ij})_{ij}} n$$

 $\text{mat}_{\mathbb{Q}}$

Obj :=
$$\mathbb{N}_0$$
, Hom $(m, n) := \mathbb{Q}^{m \times n}$

$$\ker((a_{ij})_{ij})$$

$$m \xrightarrow{(a_{ij})_{ij}} n$$

 $\text{mat}_{\mathbb{Q}}$

Obj :=
$$\mathbb{N}_0$$
, Hom $(m, n) := \mathbb{Q}^{m \times n}$

$$\ker((a_{ij})_{ij})$$

$$m \xrightarrow{(a_{ij})_{ij}} n$$

Compute

• $\ker(a_{ij})_{ij} := m - \operatorname{rank}((a_{ij})_{ij})$

 $\text{mat}_{\mathbb{Q}}$

Obj :=
$$\mathbb{N}_0$$
, Hom $(m, n) := \mathbb{Q}^{m \times n}$

$$\ker((a_{ij})_{ij}) \underset{m \longrightarrow n}{\overset{\kappa}{\longrightarrow}} n$$

Compute

• $\ker(a_{ij})_{ij} := m - \operatorname{rank}((a_{ij})_{ij})$

 $\text{mat}_{\mathbb{Q}}$

Obj :=
$$\mathbb{N}_0$$
, Hom $(m, n) := \mathbb{Q}^{m \times n}$

$$\ker((a_{ij})_{ij}) \atop \longleftarrow m \xrightarrow{(a_{ij})_{ij}} n$$

- $\bullet \ker(a_{ij})_{ij} := m \operatorname{rank}((a_{ij})_{ij})$
- $\kappa :=$ matrix whose rows form a basis of solutions of $X \cdot (a_{ij})_{ij} = 0$

 $\mathrm{mat}_{\mathbb{Q}}$

Obj :=
$$\mathbb{N}_0$$
, Hom $(m, n) := \mathbb{Q}^{m \times n}$

$$\ker((a_{ij})_{ij})_{\kappa} \atop \tau \qquad m \xrightarrow{(a_{ij})_{ij}} n$$

- $\ker(a_{ij})_{ij} := m \operatorname{rank}((a_{ij})_{ij})$
- $\kappa :=$ matrix whose rows form a basis of solutions of $X \cdot (a_{ij})_{ij} = 0$

 $\mathrm{mat}_{\mathbb{Q}}$

Obj :=
$$\mathbb{N}_0$$
, Hom $(m, n) := \mathbb{Q}^{m \times n}$

$$\ker((a_{ij})_{ij}) \xrightarrow{\mathcal{K}} m \xrightarrow{(a_{ij})_{ij}} n$$

- $\bullet \ker(a_{ij})_{ij} := m \operatorname{rank}((a_{ij})_{ij})$
- $\kappa :=$ matrix whose rows form a basis of solutions of $X \cdot (a_{ij})_{ij} = 0$

 $\mathsf{mat}_{\mathbb{Q}}$

Obj :=
$$\mathbb{N}_0$$
, Hom $(m, n) := \mathbb{Q}^{m \times n}$

$$\ker((a_{ij})_{ij}) \xrightarrow{\tau} m \xrightarrow{(a_{ij})_{ij}} n$$

- $\ker(a_{ij})_{ij} := m \operatorname{rank}((a_{ij})_{ij})$
- $\kappa :=$ matrix whose rows form a basis of solutions of $X \cdot (a_{ij})_{ij} = 0$
- $\lambda :=$ the unique solution of $X \cdot \kappa = \tau$

Given a diagram of vector spaces:

$$| = \alpha \circ \kappa'$$

$$\downarrow = \mathsf{KernelLift}(\varphi, \alpha \circ \kappa')$$

The same example in the language of category theory:

$$\downarrow = \mathsf{KernelLift}(\varphi, \alpha \circ \kappa')$$

This term may be interpreted in other contexts as well.

 $\text{vec}_{\mathbb{Q}}$

 $\mathrm{vec}_{\mathbb{Q}} \qquad \mathrm{mat}_{\mathbb{Q}}$

 $\operatorname{vec}_{\mathbb Q} \quad \simeq \quad \operatorname{mat}_{\mathbb Q}$

An introduction to finitely presented modules

Let *R* be a ring.

Definition

A (left) R-module M is called **finitely presented** if there exist

- $n, m \in \mathbb{N}_0$,
- $r_1,\ldots,r_m\in R^{1\times n}$,
- $M\cong \frac{R^{1\times n}}{\langle r_1,...,r_m\rangle}$

$$M\cong rac{R^{1 imes n}}{\langle r_1,...,r_m
angle}$$

$$M\cong rac{R^{1 imes n}}{\langle r_1,...,r_m
angle}$$

$$R = \mathbb{Q}[x, y, z]$$

$$M\cong rac{R^{1 imes n}}{\langle r_1,...,r_m
angle}$$

$$R = \mathbb{Q}[x, y, z]$$

$$\frac{\mathbb{Q}[x,y,z]}{\langle x^2+y^2+z^2-1\rangle}$$

$$M\cong rac{R^{1 imes n}}{\langle r_1,...,r_m
angle}$$

$$R = \mathbb{Q}[x, y, z]$$

$$\frac{\mathbb{Q}[x, y, z]}{\langle x^2 + y^2 + z^2 - 1 \rangle}$$
$$\frac{\mathbb{Q}[x, y, z]^{1 \times 2}}{\langle (x - y), (y - x) \rangle}$$

$$M\cong rac{R^{1 imes n}}{\langle r_1,...,r_m
angle}$$

$$R = \mathbb{Q}[x, y, z]$$

$$M\cong rac{R^{1 imes n}}{\langle r_1,...,r_m
angle}$$

$$R = \mathbb{Q}[x, y, z]$$

$$\frac{\mathbb{Q}[x, y, z]}{\langle x^2 + y^2 + z^2 - 1 \rangle}$$

$$\frac{\mathbb{Q}[x, y, z]^{1 \times 2}}{\langle (x - y), (y - x) \rangle}$$

$$\frac{\mathbb{Q}[x, y, z]^{1 \times 6}}{\langle \begin{pmatrix} 0 & 0 & 0 & 0 & xz & -z^2 \\ 0 & 0 & 0 & 0 & xy & -yz \\ 0 & 0 & 0 & 0 & xy & -yz \\ 0 & 0 & 0 & 0 & xy & -yz \\ 0 & 0 & 0 & 0 & x^2 & -xz \\ 0 & 0 & 0 & 0 & x^2 & -xz \\ -xy & -x^3 + x^2y + x^2z & xy^2 & -x^2 + xy & 0 & x - y \\ z & 0 & 0 & 0 & 0 & 0 \end{pmatrix}}$$

Finitely presented R-modules form a category

Finitely presented R-modules form a category

 mod_R

Finitely presented *R*-modules form a category

 mod_R

with R-linear maps as morphisms.

Finitely presented R-modules form a category

 mod_R

with *R*-linear maps as morphisms.

Computerfriendly model?

Goal: create computerfriendly model fpres $_R$ of mod $_R$.

- Data structures
 - objects
 - morphisms
- Algorithms
 - composition
 - identities
 - KernelObject
 - ...

Goal: create computerfriendly model fpres $_R$ of mod $_R$.

- Data structures
 - objects
 - morphisms
- Algorithms
 - composition
 - identities
 - KernelObject
 - ...

Goal: create computerfriendly model fpres $_R$ of mod $_R$.

- Data structures
 - objects
 - morphisms
- Algorithms
 - composition
 - identities
 - KernelObject
 - ...

$$\frac{\mathbb{Q}[x,y,z]^{1\times 6}}{\langle \text{Rows of} \begin{pmatrix} 0 & 0 & 0 & 0 & xz & -z^2 \\ 0 & 0 & 0 & 0 & 0 & xy & -yz \\ 0 & 0 & 0 & 0 & xy & -yz \\ 0 & -x^2z + xyz + xz^2 & y^2z & -xz + yz & x - y & 0 \\ 0 & 0 & 0 & 0 & x^2 & -xz \\ -xy & -x^3 + x^2y + x^2z & xy^2 & -x^2 + xy & 0 & x - y \\ z & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \rangle}$$

$$\frac{\mathbb{Q}[x,y,z]^{1\times6}}{\left\langle \begin{pmatrix}
0 & 0 & 0 & 0 & xz & -z^2 \\
0 & 0 & 0 & 0 & 0 & xy & -yz \\
0 & -x^2z + xyz + xz^2 & y^2z & -xz + yz & x - y & 0 \\
0 & 0 & 0 & 0 & x^2 & -xz \\
-xy & -x^3 + x^2y + x^2z & xy^2 & -x^2 + xy & 0 & x - y \\
z & 0 & 0 & 0 & 0 & 0
\end{pmatrix} \right\rangle}$$

$$\frac{\mathbb{Q}[x,y,z]^{1\times 6}}{\left\langle \begin{pmatrix} 0 & 0 & 0 & 0 & xz & -z^2 \\ 0 & 0 & 0 & 0 & xy & -yz \\ 0 & -x^2z + xyz + xz^2 & y^2z & -xz + yz & x - y & 0 \\ 0 & 0 & 0 & 0 & x^2 & -xz \\ -xy & -x^3 + x^2y + x^2z & xy^2 & -x^2 + xy & 0 & x - y \\ z & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \right\rangle }$$

Idea: a matrix $M \in \mathbb{R}^{m \times n}$ can represent the module $\frac{\mathbb{R}^{1 \times n}}{\langle M \rangle}$.

$$\frac{\mathbb{Q}[x,y,z]^{1\times 6}}{\left\langle \begin{pmatrix} 0 & 0 & 0 & 0 & xz & -z^2 \\ 0 & 0 & 0 & 0 & xy & -yz \\ 0 & -x^2z + xyz + xz^2 & y^2z & -xz + yz & x - y & 0 \\ 0 & 0 & 0 & 0 & x^2 & -xz \\ -xy & -x^3 + x^2y + x^2z & xy^2 & -x^2 + xy & 0 & x - y \\ z & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \right\rangle}$$

Idea: a matrix $M \in \mathbb{R}^{m \times n}$ can represent the module $\frac{\mathbb{R}^{1 \times n}}{\langle M \rangle}$.

Objects

$$\mathrm{Obj}_{\mathrm{fpres}_R} := \biguplus_{m,n \in \mathbb{N}_0} R^{m \times n}$$

Goal: create computerfriendly model fpres $_R$ of mod $_R$.

- Data structures
 - objects
 - morphisms
- Algorithms
 - composition
 - identities
 - KernelObject
 - ...

Goal: create computerfriendly model fpres $_R$ of mod $_R$.

- Data structures
 - objects
 - morphisms
- Algorithms
 - composition
 - identities
 - KernelObject
 - ...

Goal: create computerfriendly model fpres $_R$ of mod $_R$.

- Data structures
 - objects √
 - morphisms
- Algorithms
 - composition
 - identities
 - KernelObject
 -

Goal: create computerfriendly model fpres $_R$ of mod $_R$.

- Data structures
 - objects √
 - morphisms
- Algorithms
 - composition
 - identities
 - KernelObject
 -

Given: $M \in \mathbb{R}^{m \times n}$ and $M' \in \mathbb{R}^{m' \times n'}$.

Given:
$$M \in \mathbb{R}^{m \times n}$$
 and $M' \in \mathbb{R}^{m' \times n'}$.

$$\frac{R^{1\times n}}{\langle M \rangle}$$

$$\frac{R^{1 \times n'}}{\langle M' \rangle}$$

Given: $M \in \mathbb{R}^{m \times n}$ and $M' \in \mathbb{R}^{m' \times n'}$.

$$\frac{R^{1\times n}}{\langle M\rangle} \longrightarrow \frac{R^{1\times n'}}{\langle M'\rangle}$$

Given: $M \in \mathbb{R}^{m \times n}$ and $M' \in \mathbb{R}^{m' \times n'}$.

$$\frac{R^{1\times n}}{\langle M\rangle} \longrightarrow \frac{R^{1\times n'}}{\langle M'\rangle}$$

$$\overline{e_i}$$

Given: $M \in R^{m \times n}$ and $M' \in R^{m' \times n'}$.

$$\begin{array}{ccc} \frac{R^{1\times n}}{\langle M \rangle} & \longrightarrow & \frac{R^{1\times n'}}{\langle M' \rangle} \\ \\ \overline{e_i} & \longmapsto & \overline{r_i} \end{array}$$

Given: $M \in R^{m \times n}$ and $M' \in R^{m' \times n'}$.

$$\frac{R^{1\times n}}{\langle M \rangle} \xrightarrow{\begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix}} \xrightarrow{R^{1\times n'}} \frac{R^{1\times n'}}{\langle M' \rangle}$$

$$\overline{e_i} \longmapsto \overline{r_i}$$

Given: $M \in \mathbb{R}^{m \times n}$ and $M' \in \mathbb{R}^{m' \times n'}$.

$$\begin{array}{ccc} & \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} & \\ \hline \frac{R^{1 \times n}}{\langle M \rangle} & \longrightarrow & \frac{R^{1 \times n'}}{\langle M' \rangle} \\ \hline \overline{e_i} & \longmapsto & \overline{r_i} \end{array}$$

 $\mathsf{Hom}_{\mathsf{fpres}_R}(M,M') :=$

Given: $M \in \mathbb{R}^{m \times n}$ and $M' \in \mathbb{R}^{m' \times n'}$.

$$\begin{array}{c}
A := \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} \\
\xrightarrow{R^{1 \times n'}} \xrightarrow{R^{1 \times n'}} \\
\overline{e_i} & \longmapsto \overline{r_i}
\end{array}$$

$$\mathsf{Hom}_{\mathrm{fpres}_R}(M,M') := A \in R^{n \times n'}$$

$$A \in R^{n \times n'}$$

Given: $M \in \mathbb{R}^{m \times n}$ and $M' \in \mathbb{R}^{m' \times n'}$.

$$\begin{array}{c}
A := \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} \\
\xrightarrow[\langle M \rangle]{} \xrightarrow{R^{1 \times n'}} \\
\overline{e_i} & \longmapsto \overline{r_i}
\end{array}$$

$$\mathsf{Hom}_{\mathsf{fpres}_R}(M,M') :=$$

 $A \in \mathbb{R}^{n \times n'}$ such that

Given: $M \in \mathbb{R}^{m \times n}$ and $M' \in \mathbb{R}^{m' \times n'}$.

$$\begin{array}{c}
A := \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} \\
\xrightarrow[\langle M \rangle]{} \xrightarrow{R^{1 \times n'}} \\
\overline{e_i} & \longmapsto \overline{r_i}
\end{array}$$

$$\mathsf{Hom}_{\mathsf{fpres}_{\mathcal{B}}}(M,M') :=$$

$$A \in R^{n \times n'}$$
 such that $\{ \text{Rows of } M \cdot A \} \subseteq \langle M' \rangle$

Given: $M \in R^{m \times n}$ and $M' \in R^{m' \times n'}$.

$$\begin{array}{ccc}
A := \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} & \xrightarrow{R^{1 \times n'}} & \xrightarrow{R^{1 \times n'}} \\
\overline{e_i} & \longmapsto & \overline{r_i}
\end{array}$$

$$\mathsf{Hom}_{\mathsf{fpres}_{\mathcal{B}}}(M,M') :=$$

$$A \in R^{n \times n'}$$
 such that $\exists X \in R^{m \times m'} : M \cdot A = X \cdot M'$

Given: $M \in R^{m \times n}$ and $M' \in R^{m' \times n'}$.

$$\begin{array}{c}
A := \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} \\
\xrightarrow{R^{1 \times n'}} \xrightarrow{R^{1 \times n'}} \\
\overline{e_i} & \longmapsto \overline{r_i}
\end{array}$$

$$\mathsf{Hom}_{\mathsf{fpres}_R}(M,M') :=$$

$$A \in R^{n \times n'}$$
 such that $\exists X \in R^{m \times m'} : M \cdot A = X \cdot M'$

A defines the 0 morphism

Given: $M \in \mathbb{R}^{m \times n}$ and $M' \in \mathbb{R}^{m' \times n'}$.

$$\begin{array}{c}
A := \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} \\
\xrightarrow{R^{1 \times n}} & \xrightarrow{R^{1 \times n'}} \\
\overline{e_i} & \longmapsto & \overline{r_i}
\end{array}$$

$$\mathsf{Hom}_{\mathsf{fpres}_{\mathcal{B}}}(M,M') :=$$

$$A \in R^{n \times n'}$$
 such that $\exists X \in R^{m \times m'} : M \cdot A = X \cdot M'$

A defines the 0 morphism iff $\exists X \in R^{n \times m'} : A = X \cdot M'$

Given: $M \in R^{m \times n}$ and $M' \in R^{m' \times n'}$.

$$\begin{array}{c}
A := \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} \\
\xrightarrow{R^{1 \times n'}} \xrightarrow{R^{1 \times n'}} \\
\overline{e_i} & \longmapsto & \overline{r_i}
\end{array}$$

$$\mathsf{Hom}_{\mathsf{fpres}_{\mathcal{B}}}(M,M') :=$$

$$A \in R^{n \times n'}$$
 such that $\exists X \in R^{m \times m'} : M \cdot A = X \cdot M'$

A defines the 0 morphism iff $\exists X \in R^{n \times m'} : A = X \cdot M'$

Deciding **well-definedness** and **being zero** of morphisms in $fpres_R$ requires finding particular solutions of inhomogeneous linear systems.

Deciding **well-definedness** and **being zero** of morphisms in fpres_R requires finding particular solutions of inhomogeneous linear systems.

Ring Algorithms

Deciding **well-definedness** and **being zero** of morphisms in fpres_R requires finding particular solutions of inhomogeneous linear systems.

Ring	Algorithms
\mathbb{Q}	Gauss

Deciding **well-definedness** and **being zero** of morphisms in $fpres_R$ requires finding particular solutions of inhomogeneous linear systems.

Ring	Algorithms
\mathbb{Q}	Gauss
\mathbb{Z}	Hermite

Deciding **well-definedness** and **being zero** of morphisms in fpres_R requires finding particular solutions of inhomogeneous linear systems.

Ring	Algorithms	
\mathbb{Q}	Gauss	
$\mathbb Z$	Hermite	
$\mathbb{Q}[x,y,z]$	Buchberger	

Goal: create computerfriendly model fpres $_R$ of mod $_R$.

- Data structures
 - objects √
 - morphisms
- Algorithms
 - composition
 - identities
 - KernelEmbedding
 - <u>. . . .</u>

Goal: create computerfriendly model fpres $_R$ of mod $_R$.

- Data structures
 - objects √
 - morphisms
- Algorithms
 - composition
 - identities
 - KernelEmbedding
 -

Goal: create computerfriendly model fpres $_R$ of mod $_R$.

- Data structures
 - objects √
 - morphisms √
- Algorithms
 - composition
 - identities
 - KernelEmbedding
 - o . . .

Goal: create computerfriendly model fpres $_R$ of mod $_R$.

- Data structures
 - objects √
 - morphisms √
- Algorithms
 - composition
 - identities
 - KernelEmbedding
 - ...

Goal: create computerfriendly model fpres $_R$ of mod $_R$.

- Data structures ✓
 - objects √
 - morphisms √
- Algorithms
 - composition
 - identities
 - KernelEmbedding
 - o ...

Goal: create computerfriendly model fpres $_R$ of mod $_R$.

- Data structures ✓
 - objects √
 - morphisms √
- Algorithms
 - composition
 - identities
 - KernelEmbedding
 - o ...

Goal: create computerfriendly model fpres $_R$ of mod $_R$.

- Data structures ✓
 - objects √
 - morphisms √
- Algorithms
 - composition
 - identities
 - KernelEmbedding
 - o . . .

Goal: create computerfriendly model fpres $_R$ of mod $_R$.

- Data structures ✓
 - objects √
 - morphisms √
- Algorithms
 - o composition √
 - identities
 - KernelEmbedding
 - o . . .

Goal: create computerfriendly model fpres $_R$ of mod_R .

- Data structures ✓
 - objects √
 - morphisms √
- Algorithms
 - composition √
 - identities
 - KernelEmbedding
 - o . . .

Goal: create computerfriendly model fpres $_R$ of mod $_R$.

- Data structures ✓
 - objects √
 - morphisms √
- Algorithms
 - composition √
 - identities
 - KernelEmbedding
 - o . . .

Goal: create computerfriendly model fpres $_R$ of mod_R .

- Data structures ✓
 - objects √
 - morphisms √
- Algorithms
 - composition √
 - identities
 - KernelEmbedding
 - o . . .

Goal: create computerfriendly model fpres $_R$ of mod_R .

- Data structures ✓
 - objects √
 - morphisms √
- Algorithms
 - composition √
 - identities √
 - KernelEmbedding
 - <u>. . . .</u>

Goal: create computerfriendly model fpres $_R$ of mod $_R$.

- Data structures ✓
 - objects √
 - morphisms √
- Algorithms
 - composition √
 - identities √
 - KernelEmbedding
 - o . . .

Kernels

We cannot expect kernels to exist in fpres_R for all rings:

We cannot expect kernels to exist in $fpres_R$ for all rings:

Example

$$R := k[Z, X_i \mid i \in \mathbb{N}]/\langle ZX_i \mid i \in \mathbb{N} \rangle.$$

We cannot expect kernels to exist in fpres_R for all rings:

Example

$$R := k[Z, X_i \mid i \in \mathbb{N}]/\langle ZX_i \mid i \in \mathbb{N} \rangle$$
. Then

$$\alpha: R \longrightarrow R: r \mapsto \overline{Z} \cdot r$$

We cannot expect kernels to exist in fpres_B for all rings:

Example

$$R := k[Z, X_i \mid i \in \mathbb{N}]/\langle ZX_i \mid i \in \mathbb{N} \rangle$$
. Then

$$\alpha: R \longrightarrow R: r \mapsto \overline{Z} \cdot r$$

has

$$\ker(\alpha) = \langle \overline{X_i} \mid i \in \mathbb{N} \rangle.$$

Rings for which $fpres_R$ has kernels are called **coherent**.

Rings for which fpres $_R$ has kernels are called **coherent**.

Examples

 \mathbb{Q}

Rings for which $fpres_R$ has kernels are called **coherent**.

Examples

 \mathbb{Q} , \mathbb{Z}

Rings for which $fpres_R$ has kernels are called **coherent**.

Examples

 \mathbb{Q} , \mathbb{Z} , $\mathbb{Q}[x, y, z]$

Rings for which $fpres_R$ has kernels are called **coherent**.

Examples

 \mathbb{Q} , \mathbb{Z} , $\mathbb{Q}[x, y, z]$, $\mathbb{Q}[X_i \mid i \in \mathbb{N}]$

Theorem

Let *R* be a ring equipped with the following algorithm:

Theorem

Let R be a ring equipped with the following algorithm:

• Input: $A \in R^{m \times n}$.

Theorem

Let *R* be a ring equipped with the following algorithm:

- Input: $A \in R^{m \times n}$.
- **Output**: $S \in R^{s \times m}$ s.t. the rows of S generate the row kernel of A.

Theorem

Let *R* be a ring equipped with the following algorithm:

- Input: $A \in R^{m \times n}$.
- **Output**: $S \in R^{s \times m}$ s.t. the rows of S generate the row kernel of A.

Then we have an algorithm for computing

Theorem

Let *R* be a ring equipped with the following algorithm:

- Input: $A \in R^{m \times n}$.
- **Output**: $S \in R^{s \times m}$ s.t. the rows of S generate the row kernel of A.

Then we have an algorithm for computing

KernelObject

Theorem

Let *R* be a ring equipped with the following algorithm:

- Input: $A \in R^{m \times n}$.
- **Output**: $S \in R^{s \times m}$ s.t. the rows of S generate the row kernel of A.

Then we have an algorithm for computing

- KernelObject
- KernelEmbedding

Theorem

Let *R* be a ring equipped with the following algorithm:

- Input: $A \in R^{m \times n}$.
- **Output**: $S \in R^{s \times m}$ s.t. the rows of S generate the row kernel of A.

Then we have an algorithm for computing

- KernelObject
- KernelEmbedding

in fpres $_R$.

Theorem

Let *R* be a ring equipped with the following algorithm:

- Input: $A \in \mathbb{R}^{m \times n}$.
- **Output**: $S \in R^{s \times m}$ s.t. the rows of S generate the row kernel of A.

Then we have an algorithm for computing

- KernelObject
- KernelEmbedding

in fpres $_{R}$.

Can you prove this theorem?

Outline

Categorical abstraction is a powerful organizing principle and computational tool.

- What is categorical abstraction?
- 2 How can it be used as an organizing priniciple?
- Why is it a computational tool?

Let $M_1 \subseteq N$ and $M_2 \subseteq N$ subobjects in an abelian category.

Let $M_1 \hookrightarrow N$ and $M_2 \hookrightarrow N$ subobjects in an abelian category.

Let $M_1 \hookrightarrow N$ and $M_2 \hookrightarrow N$ subobjects in an abelian category. Compute their intersection $\gamma: M_1 \cap M_2 \hookrightarrow N$.

• $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$

Let $M_1 \hookrightarrow N$ and $M_2 \hookrightarrow N$ subobjects in an abelian category. Compute their intersection $\gamma: M_1 \cap M_2 \hookrightarrow N$.

• $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$

- $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$
- $\bullet \varphi := \iota_1 \circ \pi_1 \iota_2 \circ \pi_2$

- $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$
- $\bullet \varphi := \iota_1 \circ \pi_1 \iota_2 \circ \pi_2$

- $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$
- $\bullet \varphi := \iota_1 \circ \pi_1 \iota_2 \circ \pi_2$
- $\kappa := \text{KernelEmbedding}(\varphi)$

- $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$
- $\bullet \varphi := \iota_1 \circ \pi_1 \iota_2 \circ \pi_2$
- $\kappa := \text{KernelEmbedding}(\varphi)$

- $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$
- $\kappa := \text{KernelEmbedding}(\varphi)$

$$\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$$

$$\varphi := \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2$$

$$\kappa := \text{KernelEmbedding}(\varphi)$$

$$\gamma := \iota_1 \circ \pi_1 \circ \kappa$$

```
\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2
   pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
   pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
\varphi := \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2
\kappa := \text{KernelEmbedding}(\varphi)
\gamma := \iota_1 \circ \pi_1 \circ \kappa
```

```
\begin{split} \pi_i &:= \operatorname{ProjectionInFactorOfDirectSum} \left( \left( M_1, M_2 \right), i \right), i = 1, 2 \\ & \text{pil} := \operatorname{ProjectionInFactorOfDirectSum} \left( \left[ \begin{array}{c} \operatorname{M1}, \ \operatorname{M2} \end{array} \right], \ 1 \right); \\ & \text{pi2} := \operatorname{ProjectionInFactorOfDirectSum} \left( \left[ \begin{array}{c} \operatorname{M1}, \ \operatorname{M2} \end{array} \right], \ 2 \right); \\ \varphi &:= \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2 \\ & \operatorname{lambda} := \operatorname{PostCompose} \left( \text{ iota1}, \text{ pil } \right); \\ & \text{phi} := \operatorname{lambda} - \operatorname{PostCompose} \left( \text{ iota2}, \text{ pi2 } \right); \\ \kappa &:= \operatorname{KernelEmbedding} \left( \varphi \right) \\ \\ \gamma &:= \iota_1 \circ \pi_1 \circ \kappa \end{split}
```

```
\pi_{i} := \operatorname{ProjectionInFactorOfDirectSum}\left(\left(M_{1}, M_{2}\right), i\right), i = 1, 2
\operatorname{pil} := \operatorname{ProjectionInFactorOfDirectSum}\left(\left[\begin{array}{c} \operatorname{M1}, \operatorname{M2} \end{array}\right], 1\right);
\operatorname{pi2} := \operatorname{ProjectionInFactorOfDirectSum}\left(\left[\begin{array}{c} \operatorname{M1}, \operatorname{M2} \end{array}\right], 2\right);
\varphi := \iota_{1} \circ \pi_{1} - \iota_{2} \circ \pi_{2}
\operatorname{lambda} := \operatorname{PostCompose}\left(\operatorname{iotal}, \operatorname{pil}\right);
\operatorname{phi} := \operatorname{lambda} - \operatorname{PostCompose}\left(\operatorname{iota2}, \operatorname{pi2}\right);
\kappa := \operatorname{KernelEmbedding}\left(\varphi\right)
\operatorname{kappa} := \operatorname{KernelEmbedding}\left(\operatorname{phi}\right);
\gamma := \iota_{1} \circ \pi_{1} \circ \kappa
```

```
\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2
  pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
  pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
\varphi := \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2
  lambda := PostCompose( iotal, pil );
  phi := lambda - PostCompose( iota2, pi2 );
\kappa := \text{KernelEmbedding}(\varphi)
  kappa := KernelEmbedding( phi );
\gamma := \iota_1 \circ \pi_1 \circ \kappa
  gamma := PostCompose( lambda, kappa );
```

```
pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );

lambda := PostCompose( iotal, pi1 );
phi := lambda - PostCompose( iota2, pi2 );

kappa := KernelEmbedding( phi );

gamma := PostCompose( lambda, kappa );
```

```
pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
lambda := PostCompose( iotal, pil );
phi := lambda - PostCompose( iota2, pi2 );
kappa := KernelEmbedding( phi );
gamma := PostCompose( lambda, kappa );
```

```
IntersectionSubobjects := function( iotal, iota2 )
```

```
pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
lambda := PostCompose( iotal, pil );
phi := lambda - PostCompose( iota2, pi2 );
kappa := KernelEmbedding( phi );
gamma := PostCompose( lambda, kappa );
```

```
IntersectionSubobjects := function( iota1, iota2 )
 M1 := Source(iotal);
 M2 := Source(iota2);
 pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
 pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
 lambda := PostCompose( iotal, pil );
 phi := lambda - PostCompose( iota2, pi2 );
 kappa := KernelEmbedding( phi );
 gamma := PostCompose( lambda, kappa );
```

```
IntersectionSubobjects := function( iotal, iota2 )
 M1 := Source(iotal);
 M2 := Source(iota2);
 pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
  pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
  lambda := PostCompose( iotal, pil );
  phi := lambda - PostCompose( iota2, pi2 );
  kappa := KernelEmbedding( phi );
  gamma := PostCompose( lambda, kappa );
  return gamma;
end:
```

```
IntersectionSubobjects := function( iota1, iota2 )
  local M1, M2, pi1, pi2, lambda, phi, kappa, gamma;
 M1 := Source(iotal);
 M2 := Source(iota2);
 pi1 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
  pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
  lambda := PostCompose( iotal, pil );
  phi := lambda - PostCompose( iota2, pi2 );
  kappa := KernelEmbedding( phi );
  gamma := PostCompose( lambda, kappa );
  return gamma;
end:
```

Compute the intersection in mat₀ of

$$M_1 \stackrel{\iota_1 := \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}}{\stackrel{\parallel}{2}} \xrightarrow{N} \stackrel{\iota_2 := \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}}{\stackrel{\parallel}{3}} M_2$$

Compute the intersection in mat₀ of

```
gap> gamma := IntersectionOfSubobject( iotal, iota2 );
<A morphism in the category of matrices over Q>
```

Compute the intersection in mat₀ of

$$M_{1} \xleftarrow{\iota_{1} := \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}} N \xleftarrow{\iota_{2} := \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}} M_{2} \\ \parallel & & \parallel \\ 2 & & 3 & & 2$$

```
gap> gamma := IntersectionOfSubobject( iota1, iota2 );
<A morphism in the category of matrices over Q>
gap> Display( gamma );
[ [ 1, 1, 0 ] ]
```

A morphism in the category of matrices over Q

The same algorithm can be applied in fpres_R

The same algorithm can be applied in $fpres_R$ (your turn).

CAP packages

