Call
Bravais_inclusions B > Bin
grep 1\;1\;1\;1 Bin
We get the file 'Bin' and the output
Symbol: 1;1;1;1 homogeneously d.: 1 zclass: 2
Symbol: 1;1;1;1 homogeneously d.: 1 zclass: 1
Symbol: 1;1;1;1 homogeneously d.: 1 zclass: 5
Symbol: 1;1;1;1 homogeneously d.: 1 zclass: 9
We find that the groups 1;1;1;1_1_i with i = 1, 2, 5, or 9 contain
the unit matrix in their form space (at least up to
Z-equivalence).
Hence these groups are Z-equivalent to their
transposed groups. Note that an odd number of groups still have
to be paired. Hence one group must be Z-equivalent to itself,
without fixing a form Z-equivalent to the identity form.