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Briefly: aim of lecture

•Link: estimation/randomisation

• Two simple examples for estimation and algorithms 

•in Permutation groups

•in classical matrix groups

• A “going down” algorithm in linear groups



Randomisation  - Why?

Some potted history

•Charles Sims’ permutation group algorithms

Base of permutation group 𝐺 ≤ 𝑆𝑛

•A sequence of points (𝑖1, … , 𝑖𝑟) such that 𝐺𝑖1,…,𝑖𝑟 = 1

•Distinct 𝑔, 𝑔′ ∈ 𝐺 correspond to distinct base images

• 𝑖1, … , 𝑖𝑟 𝑔 and  𝑖1, … , 𝑖𝑟 𝑔′

•Only need to know action on r points, not all n points

•Example 𝐺 = 𝐷2𝑛 = 〈𝑎 = 12 … 𝑛 , 𝑏 = 2𝑛 3, 𝑛 − 1 … 〉, 

•Base 𝐵 = 1,2 so each 𝑔 ∈ 𝐺 determined by (1𝑔, 2𝑔)

•Small bases give compact [space/time saving] in computations

Sims’ ingenious methods compute using base images



Still – Why randomisation?

Usefulness [around 1970]

•Sims proved existence of Lyons sporadic simple group by 

constructing it as a permutation group on 9 × 106 points (smallest 

possible) on a computer which could not even store and multiply the 

two generators! He needed to use base images

So what’s the problem?

•Sims general purpose perm group algorithms great

• Except when minimum base size too large

•The Giants: 𝑆𝑛 and 𝐴𝑛

•Base for 𝑆𝑛 – (1,2, … , 𝑛 − 1)

•Base for 𝐴𝑛 – (1,2, … , 𝑛 − 2)



John Cannon and CAYLEY   1970s

• Given 𝐺 = 〈𝑋〉 permutation group with gen’g set 𝑋

– If G is primitive and not 𝐴𝑛 or 𝑆𝑛 then G has

a much smaller base and Sims’ methods worked 

brilliantly [for computations then]

– For 𝐴𝑛 or 𝑆𝑛 need special methods

• So how to identify the giants 𝐴𝑛 and 𝑆𝑛 ?

– Use theory from 1870s

– Many elements ONLY exist in giants

– So many that we should find them with high 

probability by random selection in a giant



Jordan's Theorem   circa 1870

• Given transitive permutation group 𝐺 ≤ 𝑆𝑛 , and a 

prime 𝑝 such that   
𝑛

2
< 𝑝 < 𝑛 − 2

• If some element of 𝐺 contains a 𝑝-cycle then 𝐺 is 𝐴𝑛

or 𝑆𝑛

How useful is this?





So roughly c from every log n elements is “good” 
Develop this into a “justifiable algorithm”





Monte Carlo algorithms

• named after Monte Carlo Casino in 

Monaco

• where physicist Stanislaw Ulam's uncle 

used to borrow money to gamble

want the algorithm to

complete quickly, allow a

small (controlled) probability 

of   error.



Monte Carlo algorithms

• named after Monte Carlo Casino in 

Monaco

• where physicist Stanislaw Ulam's uncle 

used to borrow money to gamble

• Famous uses: 

• Enrico Fermi (1930)  the 

properties of the neutron    

• Los Alamos (1950s) for early work 

on hydrogen bomb





Notice the role of estimation: 
lower bound for proportion of “good” elements 
leads to upper bound on error probability

• This is `essentially' algorithm used in GAP and 

MAGMA for testing if G is a permutation group 

giant. Developed by John Cannon.

• Cannon's algorithm relies on generalisations of 

Jordan's Theorem due to Jordan, Manning, CEP 

and others. Use a larger family of `good‘ elements.

• Might have seen new paper by Bill Unger on ArXiv



How good an estimate?

If estimate is far from true value does it matter?

– Yes and No !

– No: because if there are more good elements than we 

estimate then we just find them more quickly and algorithm 

confirms “G is a giant” more quickly

– Yes: because if G is not a giant then we force the 

algorithm to do needless work in testing too large a 

number of random elements [it will never find a good one] 

and so the algorithm runs too slowly! 

So the upshot is: it really does matter. We should try to 

make estimates as good as possible, especially when 

they are for an algorithmic application.

Do we need?

Should we work for?



General group computational framework 
focuses on simple groups



Example from classical groups



1998  Alice Niemeyer and CEP: 
ppd Classical Recognition Theorem 

For an irreducible subgroup G of 

Class(n, q), if G contains “two 

different good ppd elements” 

then essentially G = Class(n, q) 

with SMALLLIST of exceptions

Deep result – proof relies on 

simple group classification



Classical recognition algorithm  1998  [NieP]



Is it really a Monte Carlo algorithm?



First the answer:



The Estimation result uses geometry and 
group theory (not the FSGC)

• Need only a constant number 𝑐 = 𝑐 𝜀 random 

selections to find a ppd-pair with probability at least 

1 − 𝜀

• Case G=GL(n,q) – others similar -- For fixed e first 

find PPD(G,e) same as for G=GL(e,q)

• Show this is (1/e) x (proportion of such elements in 

cyclic group of order q^e-1)



Fast Forward: 

• 2009  Leedham-Green & O’Brien & Lubeck & 

Dietrich: Constructive recognition of 𝐺 = 𝐶𝑙(𝑑, 𝑞) for 

q odd. 

– Involves construction of balanced involution 

centralisers: Colva will speak about this.

• 2011 Akos Seress & Max Neunhoeffer: general q

– REPACEMENT for balanced involutions: must be 

easy to find; have good generation properties.

– A major facet of constructive recognition algorithms: 

find small classical subgroups – such as SL(2,q) with 

(d-2)-dim fixed point space. 



Fast Forward: 

• Crucial Ideas belong to Akos: Akos

proposed:  

– use “good-ish elements” t in Cl(d,q)  - like “tadpoles”

• Large fixed point space F

• Irreducible on t-invariant complement U with dim U = n

• Wanted also order of 𝑡 𝑈 divisible by ppd of 𝑞𝑛 − 1

• Akos believed: with high probability, two random, 

conjugate good-ish elements 𝑡, 𝑡′ generate 〈𝑡, 𝑡′〉 a 

Classical group of dimension 2n (and fixed point 

space of dimension d-2n) 



Consequence: 

• So in one step, descend from dimension d 

to dimension 2n

• Akos adamant: we could take n ~ log d

1. Must be easy to find;  are they? 

2. Must have good generation properties; do they?

• 1 – an estimation problem – I’ll discuss this

• 2 – needs FSGC, delicate algorithm development –

work still on-going 



Consequence: 

• 1 – an estimation problem – I’ll discuss this

Alice Niemeyer & CEP, published 2014

• Elements in finite classical groups whose powers have large. Disc. Math. and 

Theor. Comp. Sci. 16, 303-312. arXiv:1405.2385.

• 2 – needs FSGC, delicate algorithm development –

work still on-going 

CEP & Akos Seress & Sukru Yalcinkaya 2015

• Generation of finite classical groups by pairs of elements with large fixed point 

spaces, J. Alg. 421, 56-101. arXiv: 1403.2057



The estimation problem

• Random 𝑔 ∈ 𝐶𝑙 𝑑, 𝑞 with characteristic polynomial 

c(x). 

– Want c(x) = f(x) h(x) with 

• f irreducible of degree n between log d and 2 log d, 

• f does not divide h, 

• so t:= h(g) fixes 𝑉 = 𝐹 ⊕ 𝑈 where 𝐹 = 𝑓𝑖𝑥𝑉 𝑡 and 𝑡 𝑈
irreducible, 

• and Akos also wanted 𝒕 𝑼 to be a ppd-element

– What Akos wanted he got!



The estimation problem

• Random 𝑔 ∈ 𝐶𝑙 𝑑, 𝑞 with characteristic polynomial 

c(x). 

– Want c(x) = f(x) h(x) with 

• f irreducible of degree n between log d and 2 log d, 

• all irreducible factors of h have degree coprime to n

• so a power t of g fixes 𝑉 = 𝐹 ⊕ 𝑈 where 𝐹 = 𝑓𝑖𝑥𝑉 𝑡
and 𝑡 𝑈 irreducible, 

• and Akos also wanted 𝑡 𝑈 to be a ppd-element

– Alice and I proved: Probability of these 

conditions holding for a random g is >
𝑐

log 𝑑

Applications 

in black box 

setting



Thank you


