EE THE UNIVERSITY OF
(?) WESTERN AUSTRALIA

9@3—6&3 Ad.m-'ng International Excellence
-~ -

Estimation, Probability Bounds, and
Complexity of Algorithms

Aachen, July, 2019



THE UNIVERSITY OF
WESTERN AUSTRALIA

Briefly: aim of lecture

Link: estimation/randomisation

« Two simple examples for estimation and algorithms
*in Permutation groups
*in classical matrix groups

* A “going down” algorithm in linear groups



Randomisation - Why?

Some potted history
*Charles Sims’ permutation group algorithms
Base of permutation group G < S,

-A sequence of points (iy, ..., i,) suchthat G;, ; =

*Distinct g, g' € G correspond to distinct base images

(i1, ...,iy)g and (iy,...,i,)g’

*Only need to know action on r points, not all n points
‘Example G = D,, ={(a=(12..n),b=(2n)(3,n—1) ...),

*Base B = (1,2) so each g € G determined by (1g,2g)
*Small bases give compact [space/time saving] in computations

Sims’ ingenious methods compute using base images
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Still — Why randomisation?

Usefulness [around 1970]

*Sims proved existence of Lyons sporadic simple group by
constructing it as a permutation group on 9 x 10° points (smallest
possible) on a computer which could not even store and multiply the
two generators! He needed to use base images

So what'’s the problem?
*Sims general purpose perm group algorithms great
* Except when minimum base size too large
*The Giants: §,, and 4,,
Base for §,, — (1,2,...,n—1)
Base for 4,,— (1,2, ...,n — 2)
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John Cannon and CAYLEY 1970s

« Given G = (X) permutation group with gen’'g set X

— If G Is primitive and not A4,, or S,, then G has
a much smaller base and Sims’ methods worked
brilliantly [for computations then]

— For A, or §,, need special methods

« S0 how to identify the giants 4,, and S, ?

— Use theory from 1870s

— Many elements ONLY exist in giants

— S0 many that we should find them with high
probability by random selection in a giant




== THE UNIVERSITY OF
U.Y WESTERN AUSTRALIA

Jordan's Theorem circa 1870

« Given transitive permutation group G < §,, , and a
prime p such that g <p<n-—2

 If some element of G contains a p-cycle then G is 4,
or S,

How useful is this?
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How common are Jordan’s ‘good’ elements?

Define: g € S, is ‘good’ if g contains a p-cycle, for some prime p,
nf2<p<n-3

Example: ¢ = (12345)(67) € Sq is ‘good': n=9,p=5

For fixed p: number of elements in S,, containing a p-cycle is

n!

(e~ Dl -p)t=""" (and £ in 4)
p P

S

Proportion of ‘good’ elements in 4, or S,: Y}, /2<p<n_3% > ]ﬁ
for some constant ¢



23558 THE UNIVERSITY OF

’N

QD) WESTERN AUSTRALIA
DN
&y

So roughly c from every log n elements is “good”
Develop this into a “justifiable algorithm”

Monte Carlo algorithm to recognise S,,. A,

Input: Transitive G = (x1,....,: r).) < Sp and real number ¢
(0 < £ < 1, error probability bound)

Output: True (hopefully if G is S,, or A,) or False

Algorithm: Select up to N = [(logz—1)(logn)/c] random elements
g from G and test if g is ‘good’.

If a ‘good’ element is found then return True
If no ‘good’ elements are found then return False
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What does this algorithm actually do?: (At least it completes!)

1. If the algorithm returns True then G = A,, or S,, (guaranteed
by Jordan's Theorem)

2. If the algorithm returns False then this may be incorrect, but
only if GG does equal A,, or S,,, and we failed to find a ‘good’' element.

3. Prob(do not find good element, given that ¢ = 4,, or S,))

C AN
< (1 — ) <€
log n

So this is a Monte Carlo algorithm with error probability less
than -=.
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Monte Carlo algorithms

« named after Monte Carlo Casino in
Monaco

« where physicist Stanislaw Ulam's uncle
used to borrow money to gamble

want the algorithm to
complete quickly, allow a
small (controlled) probability
of error.
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Monte Carlo algorithms
« named after Monte Carlo Casino in
Monaco

« where physicist Stanislaw Ulam's uncle
used to borrow money to gamble

Famous uses:

88 Chrico Fermi (1930) the
properties of the neutron

Los Alamos (1950s) for early work
on hydrogen bomb




=528 THE UNIVERSITY OF
WESTERN AUSTRALIA

Further Comments on Context

1: assume available approximately independent random elements
from G (Both theoretical and practical algorithms exist for this.)

2: Monte Carlo algorithms: error probability must be controlled

3: variety of mathematics required for both design and proof

Algebra to prove correctness of output
Probability estimates to control error
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« This is "essentially' algorithm used in GAP and
MAGMA for testing if G Is a permutation group
giant. Developed by John Cannon.

« Cannon's algorithm relies on generalisations of
Jordan's Theorem due to Jordan, Manning, CEP
and others. Use a larger family of 'good’ elements.

« Might have seen new paper by Bill Unger on ArXiv
Notice the role of estimation:

lower bound for proportion of “good” elements
leads to upper bound on error probability
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Do we need?

How good an estimate? o] e et o

If estimate is far from true value does it matter?

— Yes and No !

— No: because if there are more good elements than we
estimate then we just find them more quickly and algorithm
confirms “G is a giant” more quickly

— Yes: because if G is not a giant then we force the
algorithm to do needless work in testing too large a
number of random elements [it will never find a good one]
and so the algorithm runs too slowly!

So the upshot is: it really does matter. We should try to
make estimates as good as possible, especially when
they are for an algorithmic application.
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General group computational framework
focuses on simple groups

Few general statements on group computation

‘Tree View' underpins new generation of group algorithms:

Focus on finite simple groups:

G

N_/ b GIN

' ® d N
M N/M H/N G/H

Some names: O'Brien, Leedham-Green, Seress, Neunhoeffer, .
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Example from classical groups

Class(n.g) = GL(n.q).Sp(n. qg) etc actingon V = V(n.q)
Primitive prime divisor (ppd) of g° — 1 a prime r dividing
q° — 1 such that A/ < e with r dividing g’ — 1

Ppds interesting because superficially

ICI&SS(”. q)l - qsnmc power H (ql - 1)

various |/
ppd-(n. g; e) element g = Class(n. g) is an element with order
divisible by a ppd of g° — 1;

‘good ppd element”. e > n/2 plus minor additional conditions



=550 THE UNIVERSITY OF
(.Y WESTERN AUSTRALIA

1998 Alice Niemeyer and CEP:
ppd Classical Recognition Theorem

For an irreducible subgroup G of
Class(n, q), if G contains “two
different good ppd elements”
then essentially G = Class(n, q)
with SMALLLIST of exceptions

Deep result — proof relies on
simple group classification
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Classical recognition algorithm 1998 [NieP]

Input: G = (Xj...., Xi) < Class(n. q)
Output: True (and then sure that G = Class(n. q)), or False.

Classical Recognition Algorithm: Niemeyer, CEP, 1998

1. Test MANY random elements of G;

2. If “two good ppd elements” not found return False;

3. If found and test for membership in SMALLLIST positive,
return False;

4. Else report True

But how many is MANY?
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Is it really a Monte Carlo algorithm?

@ If it returns True then G really is Class(n, q) (by theorem)

@ If it returns False this may be incorrect
(namely if G = Class(n. g) and we falil to find good ppds).

If we knew the proportion of “good ppd pairs™ in Class(n, q) then
we could estimate how many random elements to test — Monte
Carlo Algorithm

Basic problem: Estimate the proportion of good ppd elements

in Class(n. q).
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First the answer:

For G = Class(n.q) and e > n/2 let PPD(G, e) be the
proportion of ppd-(n. g; e) elements in G
Adding over all such e let PPD(G) be proportion of ppd

elements in G

ppd Estimation Theorem: Niemeyer, CEP, 1998

Let e > 7 such that g° — 1 divides |G|. Then
(@) + <PPD(G.e) < 1.

(b) log2—2 < PPD(G) < log2 + 2

[or half this for some types of classical groups]
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The Estimation result uses geometry and
group theory (not the FSGC)

* Need only a constant number ¢ = c(¢) random
selections to find a ppd-pair with probability at least
1—¢

e Case G=GL(n,q) — others similar -- For fixed e first
find PPD(G,e) same as for G=GL(e,q)

e Show this is (1/e) x (proportion of such elements in
cyclic group of order g™e-1)
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Fast Forward:

« 2009 Leedham-Green & O'Brien & Lubeck &
Dietrich: Constructive recognition of ¢ = Cl(d, q) for
g odd.

— Involves construction of balanced involution
centralisers: Colva will speak about this.

« 2011 Akos Seress & Max Neunhoeffer: general q

— REPACEMENT for balanced involutions: must be
easy to find; have good generation properties.

— A major facet of constructive recognition algorithms:
find small classical subgroups — such as SL(2,q) with
(d-2)-dim fixed point space.
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Fast Forward:

* Crucial Ideas belong to Akos: Akos
proposed:

— use “good-ish elements” t in Cl(d,q) - like “tadpoles”
 Large fixed point space F
* Irreducible on t-invariant complement U with dim U = n
« Wanted also order of t|; divisible by ppd of g — 1

» Akos believed: with high probability, two random,
conjugate good-ish elements ¢, t’ generate (t,t') a
Classical group of dimension 2n (and fixed point
space of dimension d-2n)
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Consequence:

SO In one step, descend from dimension d
to dimension 2n

Akos adamant: we could taken ~log d

1. Must be easy to find; are they?
2. Must have good generation properties; do they?

1 — an estimation problem — I'll discuss this

2 — needs FSGC, delicate algorithm development —
work still on-going
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Consequence:

« 1 — an estimation problem — I'll discuss this

Alice Niemeyer & CEP, published 2014

« Elements in finite classical groups whose powers have large. Disc. Math. and
Theor. Comp. Sci. 16, 303-312. arXiv:1405.2385.

« 2 —needs FSGC, delicate algorithm development —
work still on-going

CEP & Akos Seress & Sukru Yalcinkaya 2015

* Generation of finite classical groups by pairs of elements with large fixed point
spaces, J. Alg. 421, 56-101. arXiv: 1403.2057
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The estimation problem

 Random g € Cl(d, q) with characteristic polynomial
c(Xx).

— Want c(x) = f(x) h(x) with
« firreducible of degree n between log d and 2 log d,
» f does not divide h,

« sot:=h(g) fixesV = F @ U where F = fixy,(t) and t|y
irreducible,

« and Akos also wanted t|y to be a ppd-element

— What Akos wanted he got!
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The estimation problem

 Random g € Cl(d, q) with characteristic polynomial
c(Xx).

— Want c(x) = f(x) h(x) with
« firreducible of degree n between log d and 2 log d,
« all irreducible factors of h have degree coprime to n

| ® soapowertofgfixes V =F @ Uwhere F = fixy(t)
setting and t| irreducible,

« and Akos also wanted t|; to be a ppd-element

Applications

— Alice and | proved: Probability of these
conditions holding for a random g is >

Cc

logd
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Thank you




