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Das sollt Ihr mir nicht zweimal sagen! 
Ich denke mir, wie viel es nützt 
Denn, was man schwarz auf weiß besitzt, 
Kann man getrost nach Hause tragen. 

J.W.V.GOETHE, Faust, 1. Akt 

This, Sir, a second time you need not say! 
Your counsel I appreciate quite; 
What we possess in black and white, 
We can in peace and comfort bear away. 

http://www.math.colostate.edu/~hulpke/talks/CT19.pdf
http://www.math.colostate.edu/~hulpke/talks/CT19.pdf


Executive Summary
I want composition tree to help 
work with matrix groups. 
But, even more, I want the parts of 
composition tree to help with the 
performance of many calculations 
(which might seem to have nothing 
to do with matrix groups).



No, we’re not selling 
composition tree for 

scrap



Composition Tree Is
A data structure for matrix groups 
Divide and conquer paradigm for arbitrary groups 
The algorithms used to build the data structure 
An implementation (existing, future, hypothetical) 
of such algorithms in GAP



Composition Tree Is
A data structure for matrix groups 
Divide and conquer paradigm for arbitrary groups 
The algorithms used to build the data structure 
An implementation (existing, future, hypothetical) 
of such algorithms in GAP

Not a solitaire, but the combination of 
algorithms that are useful in their own. 
Intermediate steps (even if only for small 
cases) are meaningful. 
Pay-off not only when all implementation 
is done.



View Point

Imagine we already had composition tree (in all its 
glory) in GAP. 

What would we use it for ? 

Which design questions do we need to answer ? 

What issues will turn up ? 

Hope this might help to guide implementation.
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Imagine we already had composition tree (in all its 
glory) in GAP. 

What would we use it for ? 

Which design questions do we need to answer ? 

What issues will turn up ? 

Hope this might help to guide implementation.

Using the parts of 
composition tree more will 
provide more tests, even 
without constructing 
complicated recognition 
test cases.



Immediate Consequences

A composition tree lets us compute 

-Group Order 

-Composition Structure 

-Membership test 

-Decomposition into generators — Evaluate 
Homomorphisms 

for matrix groups over finite fields.
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Immediate Consequences

A composition tree lets us compute 

-Group Order 

-Composition Structure 

-Membership test 

-Decomposition into generators — Evaluate 
Homomorphisms 

for matrix groups over finite fields.

Do we need "strong" 
generators into which one 
decomposes easily ?



The CGT Stack

Element Arithmetic and Equality

Group Order, Subgroup Membership

Homomorphisms (constructive membership)

Find Classes, Subgroups, Characters; Test Properties

Isomorphism tests, Data Libraries

Your Own Calculations; FindCounterexample



Potential Issues

General membership test at start of every user 
function becomes expensive. 
How to decide between using nice 
monomorphisms (automatic translation to 
permutation action on vectors) and composition 
tree? 
Data structure for subgroups? (➠Solvable Radical)
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composition tree, unless the 
tree is verified correct. 
(➠Presentations)
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Residue class modulo m: Layers for prime powers 
are additive: (I+pA)(I+pB) ≡ I+p(A+B)  (mod p2), 
already in matgrp package. 

Integers: Consider congruence images. Sufficient if 
finite group or congruence subgroup property. 
(joint w/ DETINKO,FLANNERY). 

Function Fields: Approximations give similar layers 
for powers of t. Not implemented yet. 

Other Rings
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Residue class modulo m: Layers for prime powers 
are additive: (I+pA)(I+pB) ≡ I+p(A+B)  (mod p2), 
already in matgrp package. 

Integers: Consider congruence images. Sufficient if 
finite group or congruence subgroup property. 
(joint w/ DETINKO,FLANNERY). 

Function Fields: Approximations give similar layers 
for powers of t. Not implemented yet. 

Other RingsMatrix arithmetic over 
other rings is slow!



Solvable Radical

Standard approach for permutation groups. 

Let R⊲G be solvable radical (largest solvable normal 
subgroup). Then all nonabelian composition factors 
occur in G/R. 

Theorem: Action of G on all nonabelian chief 
factors has kernel R, Image with good permutation 
representation.



Known Algorithm Paradigms

Linear Algebra 
good polynomial time

(Combinatorial) 
Search 

exponential time 
possible

Direct 
Construction, 

Lookup 
(write down the result) 

<=linear time



Goal: Minimize 
Combinatorial search, 
reduce to linear algebra 
+ looking up 
information in library.

Known Algorithm Paradigms

Linear Algebra 
good polynomial time

(Combinatorial) 
Search 

exponential time 
possible

Direct 
Construction, 

Lookup 
(write down the result) 

<=linear time



Solvable Radical
Let M/N≅Tm be a nonsolvable chief factor. Then the 
m copies of T show up in the composition tree. 
We can calculate the action of G on M/N from the 
composition tree, without holding M/N. Image in
 . Get effective homomorphism ϱ: G→G/
R. 
Generators for R from presentation of image of ϱ. 
PCGS for R from stabilizer chain. (Shortish orbits.) 
Basic version implemented in matgrp package. 
Operation FittingFreeLiftSetup.

Aut(T) ≀ Sm
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We can calculate the action of G on M/N from the 
composition tree, without holding M/N. Image in
 . Get effective homomorphism ϱ: G→G/
R. 
Generators for R from presentation of image of ϱ. 
PCGS for R from stabilizer chain. (Shortish orbits.) 
Basic version implemented in matgrp package. 
Operation FittingFreeLiftSetup.

Aut(T) ≀ Sm

Use presentations of simple 
groups, constructive 
recognition to get good 
perm rep. for radical factor.

CANNON, 
HOLT, 
UNGER 
2019
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Solvable Radical
Let M/N≅Tm be a nonsolvable chief factor. Then the 
m copies of T show up in the composition tree. 
We can calculate the action of G on M/N from the 
composition tree, without holding M/N. Image in
 . Get effective homomorphism ϱ: G→G/
R. 
Generators for R from presentation of image of ϱ. 
PCGS for R from stabilizer chain. (Shortish orbits.) 
Basic version implemented in matgrp package. 
Operation FittingFreeLiftSetup.

Aut(T) ≀ Sm

SIMS 
1989

Get good base from 
composition tree (for R). 
Or use composition tree 
in place of StabChain? 
Analog of SpecialPcgs?



Using existing (permutation group) methods in G/R: 
Conjugacy Classes, Centralizer, Element Conjugacy 
MaximalSubgroupClassReps 

Not yet linked to standard function: 
Normalizer (NormalizerViaRadical) 
Hall (and thus Sylow) subgroups 

In Principle, but not yet coded properly in library: 
Subgroup Lattice 
Automorphism Group

What Will Work Already?



Using existing (permutation group) methods in G/R: 
Conjugacy Classes, Centralizer, Element Conjugacy 
MaximalSubgroupClassReps 

Not yet linked to standard function: 
Normalizer (NormalizerViaRadical) 
Hall (and thus Sylow) subgroups 

In Principle, but not yet coded properly in library: 
Subgroup Lattice 
Automorphism Group

What Will Work Already?

Subgroups stored according 
to Radical data structure, 
same composition tree.



Using existing (permutation group) methods in G/R: 
Conjugacy Classes, Centralizer, Element Conjugacy 
MaximalSubgroupClassReps 

Not yet linked to standard function: 
Normalizer (NormalizerViaRadical) 
Hall (and thus Sylow) subgroups 

In Principle, but not yet coded properly in library: 
Subgroup Lattice 
Automorphism Group

What Will Work Already?But very basic for almost 
simple groups. 
(➠Recognition)



Using existing (permutation group) methods in G/R: 
Conjugacy Classes, Centralizer, Element Conjugacy 
MaximalSubgroupClassReps 

Not yet linked to standard function: 
Normalizer (NormalizerViaRadical) 
Hall (and thus Sylow) subgroups 

In Principle, but not yet coded properly in library: 
Subgroup Lattice 
Automorphism Group

What Will Work Already?Can be better than 
backtrack for some 
permutation groups, but 
how to select strategy?
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homomorphisms using 
composition tree
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Not Yet attempted: 

Possible Project: Intersection 
Use: 

•PcGroup ideas 
•Existing Normalizer code 
•Backtrack 
•Intersection of Classicals

GLASBY 
SLATTERY 

1990

BROOKSBANK 
WILSON 
2012



gap> LoadPackage(“matgrp”); #use recog
   […]
gap> g:=AtlasSubgroup("Co1",IsMatrixGroup,3); #211.M24
<matrix group of size 501397585920 with 2 generators>
gap> FittingFreeLiftSetup(g); #10 seconds
rec( depths:=[ 1, 12 ],
  factorhom:=[ [<24x24 matrix GF2>, […] ]] ->[ (1,11[…]],
  pcgs := Pcgs([ <24x24 matrix GF2>, […] ]),
  pcisom := Pcgs([…]) -> Pcgs([ f1, f2, […]]),
  radical := <matrix group size 2048 with 11 generators>,)
gap> Length(ConjugacyClasses(g)); #<1 second
80
gap> me:=ApplicableMethod(HallSubgroupOp,[g,[3]],0,3);;
gap> s:=me(g,[3]); #<0.1 second
<matrix group of size 27 with 3 generators>
gap> n:=NormalizerViaRadical(g,s); # 0.5 second
<matrix group of size 432 with 7 generators>
gap> m:=MaximalSubgroupClassReps(g);; # 2 seconds
gap> List(m,x->IndexNC(g,x));
[ 2048,24,276,759,1288,1771,2024,3795,40320,1457280 ]
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gap> LoadPackage(“matgrp”); #use recog
   […]
gap> g:=AtlasSubgroup("Co1",IsMatrixGroup,3); #211.M24
<matrix group of size 501397585920 with 2 generators>
gap> FittingFreeLiftSetup(g); #10 seconds
rec( depths:=[ 1, 12 ],
  factorhom:=[ [<24x24 matrix GF2>, […] ]] ->[ (1,11[…]],
  pcgs := Pcgs([ <24x24 matrix GF2>, […] ]),
  pcisom := Pcgs([…]) -> Pcgs([ f1, f2, […]]),
  radical := <matrix group size 2048 with 11 generators>,)
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80
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<matrix group of size 27 with 3 generators>
gap> n:=NormalizerViaRadical(g,s); # 0.5 second
<matrix group of size 432 with 7 generators>
gap> m:=MaximalSubgroupClassReps(g);; # 2 seconds
gap> List(m,x->IndexNC(g,x));
[ 2048,24,276,759,1288,1771,2024,3795,40320,1457280 ]

Cheat 2: 
Small Dimension

Cheat 3: 
Simple group of 

small degree, brute 
force isomorphism

Cheat 1: 
Avoid Nice 

Monomorphism



Further Out
Smaller generating sets for groups in 
composition/chief series, preimages, all 
subgroups 
Better permutation representations: 
Assume N⊲G el.ab., U point stabilizer 
in permutation action of G that 
intersects into N. Then UN stabilizes 
submodule U∩N. Use information 
about subgroups of G/N to get 
permutation representation for G.

G

N

U

U∩N

UN



Presentations
Composition tree uses presentations (of simple 
groups) to verify the tree.  

GAP currently has canned presentations only for 
alternating groups, otherwise builds from stabilizer 
chain. ➠Larger, more arbitrary, slower 

Could use:

Presentations 
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many generators
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Random 
elements
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Presentations
Composition tree uses presentations (of simple 
groups) to verify the tree.  

GAP currently has canned presentations only for 
alternating groups, otherwise builds from stabilizer 
chain. ➠Larger, more arbitrary, slower 

Could use:

Presentations Complements (Maximal) Subgroups

Kernels 

Verification of StabChain 

Should be 
a cheap operation, cost 

comparable to 
composition series



Presentations
Composition tree uses presentations (of simple 
groups) to verify the tree.  

GAP currently has canned presentations only for 
alternating groups, otherwise builds from stabilizer 
chain. ➠Larger, more arbitrary, slower 

Could use:

Presentations Complements (Maximal) Subgroups

Kernels 

Rewriting Systems Extensions

Verification of StabChain 



Trust, but verify

Доверяй, но проверяй

Verification Of Stabilizer Chains



gap> f:=FreeGroup("a","b","c");;
gap> g:=f/ParseRelators(f,
   "a^3=b^4=c^4=(a^2b^2)^2=(a^2c)^2=(abc)^2=1");;
gap> l:=LowIndexSubgroups(g,10);;Length(l);
47
gap> ProfileOperationsAndMethods(true);
gap> ProfileGlobalFunctions(true);
gap> k:=Intersection(l);;
gap> DisplayProfile();
  count  self/ms  chld/ms   function
    61      201    51119    VerifySGS
    99        9   104373    StabChainRandomPermGr*
   2143       16  142622    StabChainOp: group an*
    46        2   164512    Intersection2: subgro*
         164636             TOTAL
gap>
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    52        4  2271196
        2271210 



gap> f:=FreeGroup("a","b","c");;
gap> g:=f/ParseRelators(f,
   "a^3=b^4=c^4=(a^2b^2)^2=(a^2c)^2=(abc)^2=1");;
gap> l:=LowIndexSubgroups(g,10);;Length(l);
47
gap> ProfileOperationsAndMethods(true);
gap> ProfileGlobalFunctions(true);
gap> k:=Intersection(l);;
gap> DisplayProfile();
  count  self/ms  chld/ms   function
    61      201    51119    VerifySGS
    99        9   104373    StabChainRandomPermGr*
   2143       16  142622    StabChainOp: group an*
    46        2   164512    Intersection2: subgro*
         164636             TOTAL
gap>

                            11
53

   117      820  1201184
   179       41  1676427
  2963       24  1996006
    52        4  2271196
        2271210 

>50% of 
calculation time is spent 
on verifying a stabilizer 

chain. Testing takes longer 
than the actual chain 

computations!



Verification Of Stabilizer Chains
The current verification can be very costly in cases 
such as groups with many orbits (as arise naturally 
when combining permutation quotients — FpGroups 
and NaturalHomomorphismByNormalSubgroup). 

Analog case: Number of generators for permutation 
subgroups (backtrack, kernel, pre-image). 

Presentation-based verification ought to be much 
faster, as the constituents are “easy”.
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Verification Of Stabilizer Chains
The current verification can be very costly in cases 
such as groups with many orbits (as arise naturally 
when combining permutation quotients — FpGroups 
and NaturalHomomorphismByNormalSubgroup). 

Analog case: Number of generators for permutation 
subgroups (backtrack, kernel, pre-image). 

Presentation-based verification ought to be much 
faster, as the constituents are “easy”.

Use the existing 
CompositionSeries for 
permutation groups, or 
composition tree code?

Does Verification need to 
give hints about omissions, 
or simply trigger 
recalculation?

Also for genss package!



Advertisement: 2-Cohomology
Current development version 
has 2-Cohomology for general 
finite groups: 
TwoCohomologyGeneric. 
Uses confluent rewriting system 
for factor group, pair overlaps to 
get conditions. 
FpGroupCocycle constructs 
extension (also can build decent 
permutation representation.)



Advertisement: 2-Cohomology
Current development version 
has 2-Cohomology for general 
finite groups: 
TwoCohomologyGeneric. 
Uses confluent rewriting system 
for factor group, pair overlaps to 
get conditions. 
FpGroupCocycle constructs 
extension (also can build decent 
permutation representation.)

So far good rewriting 
systems for simples only 
for alternating groups.



gap> g:=PerfectGroup(IsPermGroup,1344,1);;
gap> mo:=IrreducibleModules(g,GF(2),0);;List(mo[2],x-
>x.dimension);
[ 1, 3, 3, 8 ]
gap> coh:=TwoCohomologyGeneric(g,mo[2][2]);;
gap> coh.cohomology;
[ <an immutable GF2 vector of length 159>,
  <an immutable GF2 vector of length 159> ]
gap> comp:=CompatiblePairs(g,mo[2][2]);
<group of size 2688 with 5 generators>
gap> reps:=CompatiblePairOrbitRepsGeneric(comp,coh);;
gap> Length(reps);
3
gap> gps:=List(reps,x->FpGroupCocycle(coh,x,true));;
gap> gps:=List(gps,x->Image(IsomorphismPermGroup(x)));
[ <perm. group with 8 generators>, <perm. group with 8
    generators>, <perm. group with 8 generators> ]
gap> List(gps,NrMovedPoints);
[ 16, 22, 28 ]
gap> List(gps,MinimalFaithfulPermutationDegree);
[ 16, 22, 28 ]

build permutations ⬇



Example: Perfect Groups
Currently testing by constructing perfect groups 
(also uses CompatiblePairOrbitRepsGeneric):

There are 98 52 258 154
perfect groups of 
order 61440 86016 122880 172032

There are >500 291 46
perfect groups of 
order 245760 344064 368640

(and I have concrete lists of groups)



To use presentations, need constructive recognition 
of (almost) simple groups. It has many other uses: 

Maximal subgroups (already needed, generic 
isomorphism routine requires conjugacy classes) 
Could do: Better permutation representation 
Conjugacy classes 
Particular/All subgroups 
Automorphism group (reps for outer) 
In some cases, a groups construction could 
provide recognition for free.
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Need Recognition 
operation in library (or 
always loaded package) 
with fallback based on 
isomorphism test.
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Immediate pay-off: 
Maximal subgroups, and 
routines that use it 
(intermediate subgroups, 
double cosets, factor perm 
rep., automorphism group)
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To use presentations, need constructive recognition 
of (almost) simple groups. It has many other uses: 

Maximal subgroups (already needed, generic 
isomorphism routine requires conjugacy classes) 
Could do: Better permutation representation 
Conjugacy classes 
Particular/All subgroups 
Automorphism group (reps for outer) 
In some cases, a groups construction could 
provide recognition for free.

Recognition
Isomorphism can not use 
recognition as long as 
recognition might fall back 
to isomorphism.



Attribute ConstructiveRecognition returns type 
information and an object on which one can call 
ImagesRepresentative and PreImagesRepresentative. 
Operation RecognizeGroup(type,group) returns such 
homomorphism object for known type. The type is 
either a record, or true (if type is not known). 
Methods can dispatch on group, but otherwise 
always apply, bail out if type does not fit. 
Fallback method: Calculate order, run through 
simple groups of that order, test isomorphism.

Proposed Recognition API
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Type is record with 
components series and 
parameter (which could be 
string for sporadic). Must 
be fixed once and for all. 
Build on current  
DataAboutSimpleGroup and 
SimpleGroup
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information and an object on which one can call 
ImagesRepresentative and PreImagesRepresentative. 
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Proposed Recognition API

Type is record with 
components series and 
parameter (which could be 
string for sporadic). Must 
be fixed once and for all. 
Build on current  
DataAboutSimpleGroup and 
SimpleGroup

Need translation from 
type to name used by 
character tables, tables of 
marks.
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Could be GAP 
homomorphism or less. No 
membership test. (Provide 
different interface if failure 
may be possible.)
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ImagesRepresentative and PreImagesRepresentative. 
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Proposal: Transfer Information
Any method for generic operation that reduces to 
simple group case will call appropriate/same operation 
(e.g. MaximalSubgroupClassReps) on argument for 
which IsSimpleGroup is set to true. 
Convention: Such methods will TryNextMethod() if 
group is known simple, redispatch if simple discovered. 
Separate fallback method in library at IsSimpleGroup 
rank only, using old approach (used so far). 
Libraries that provide data install methods for 
operation under (at least) IsSimpleGroup. (installed 
later, so rank higher than library fallback).



Proposal: Transfer Information
Any method for generic operation that reduces to 
simple group case will call appropriate/same operation 
(e.g. MaximalSubgroupClassReps) on argument for 
which IsSimpleGroup is set to true. 
Convention: Such methods will TryNextMethod() if 
group is known simple, redispatch if simple discovered. 
Separate fallback method in library at IsSimpleGroup 
rank only, using old approach (used so far). 
Libraries that provide data install methods for 
operation under (at least) IsSimpleGroup. (installed 
later, so rank higher than library fallback).

IsSimpleGroup method 1

IsSimpleGroup method 2

general method

IsSimpleGroup fallback



Other Composition Trees
Same kind of data structure for other classes of 
groups. Can use some actions and permutation 
fallback in place of Aschbacher theorem: 

Automorphism groups (action on group layers) [cf. 
Sims '97] 
Hybrid groups (formal extensions), formal factor 
groups: Use composition tree interface to get high-
level algorithms. 
Permutation groups (e.g. if not short-base).



Summary: Agenda
1. Provide short presentations for simple groups, 
enable recognition verification.  

2.Define Constructive recognition API. Implement 
methods for An, PSLn (at least small n). 

3.Use presentations to verify stabilizer chains 
4.Use presentations to verify composition trees 
5.Allow separation of HasNice... methods. Model: 
methods for generic operations for FpGroups. 

6.Start using composition tree for matrix groups. 
7.Start looking at other groups (automorphisms &c.)


