
1 July 2019

The recog package Max Horn  
University of Siegen

WARNING!
This talk contains very little math

Some background

What is recog and why does it matter?

❖ recog is a GAP package

❖ recog implements {matrix, permutation, black box}-
group recognition

❖ many computational research problems hinge on having
access to effective group recognition

❖ only (?) matrix group recognition implementation
outside of Magma

❖ fully operational recog is crucial for GAP and beyond

What happened so far …

❖ recog authors: Ákos Seress and Max Neunhöffer

❖ 2013 was a bad year: Ákos died; Max left academia

❖ since then, no major work was done on recog

❖ (some minor work by me: bug fixes, documentation, …)

❖ lots is missing in recog – but we need it!

❖ who is going to do the work?

… and your students, friends, … – spread the word!

How does it work?

How does recognition work, roughly?
❖ Input: set ! of generators (permutations, matrices, …)

❖ Output:
❖ order of ! , name of !

❖ new generating set ! ,

❖ procedure to express any ! as word (SLP) in !

❖ Iterate over a catalog of methods to analyze ! ; each either
❖ “reduces” to smaller cases by an epimorphism ! , or

❖ handles group directly if “easy” or almost simple

X

G := ⟨X⟩ G

Y

g ∈ G Y

G
φ : G → H

The recognition tree

❖ blue = kernels, white = images

❖ leaves are either easy to handle or almost simple

G1

R8

Ry

R3

G2

j3 Gn≠1

Gn
<latexit sha1_base64="X7V6hSBLu6O365ki6cwD2jlcw5k=">AAAagXic1Zhbb9s2FMfZS7bWu6XbW/ZCLCm2Aa5ruyhWoHDRJmnSe9Pm0qCxEehC24Rp2ZDkXCrobfuQ+xL7BHvY4RFpJwpjSt1e5oNERyR/f5KH4jFldyx4FNfrf165eu36whdf3rhZ+errb779bvHW93vRaBJ6bNcbiVG47zoREzxguzGPBdsfh8wZuoJ9cAdrsv7DEQsjPgp24tMx6wydXsC73HNiKDq8df2vdswHnyIWJxVK45CxYOSzu7UoPhWMtmjiCN4LWh4LYhZWKQ8CFtKIjVv1cVylMTuJaVbH/CoIUNodBXGrHXW7zpCL01QWulz4ZxR1J1Xq8dATcHWF4w2q1A+d45byUfmY+3G/1aw12bBKYRanNO5zbwCitwuoHvd5DJfzA2q73YiFnEXnupN6MHQuhKH/Ru0+G+JEBiwMLBOZsKmwdJWkdG1TorTnhAE/MXSQVtJKpe2yHg8SuVpj7sWTkKUHdx5VH7WimDki7v9cRaWqYEdMKJFWEnEXHo0e9eFRcgJPyt73hneXG1WKDc9WwES9YdqptGWf9EAGuEOTlc3DxkqKa+v1oSihWbUMBlQ37md1l9bXZ/UX2mQzhlYpZX6P0W44GtKxE8ITRQ98J+ozv/Of4ZeMU02TzulHT+VBOqeR0knzHRpCN4tsc2V+9O49+H9ED6aSBHca6crlWtXsSe9cHNBBNBLc7+Smbop1ruWs82DFEPeHlTYL/HM7pnK4uFyv1fFDLzoN5SwT9dka3aq0SJv4ZEQ8MiFDwkhAYvAFcUgEdkAapE7GUNYhCZSF4HGsZyQlFWAn0IpBCwdKB/C/B3cHqjSAe6kZIe1BLwL+QiApuQ1/G6joQmvZKwM/guvf8PcJy3qX9pCgshzhKVxdULyJiq+hPCZ9aGEjh6qlHoudlLOKSZc8wNlwGN8YS+Q8vanOOtSEUDbAGkqeYsseaLh4fwQRCOC6CyOQUdYKFGfsw9XBK0OVQCk6oBfCVUZfjqcyZ35Zm0+4PlSZbqvrBFxdUJTxP8W18aftbW0jiJIDvcp1rQLpQAuvMC2vIcTgGOls/iO1Gk5hFRkfD58lB9vImEakhrGQqxhiXARGJot/OjdmAkYwUlEPpm2zFWAwVg/HOFRrk0DdE7AUPf0kuWAJlmY74zJyDcxErlnJdTATuW4ln4KZyKdWcgPMRG5YyWdgJvKZlXwJZiJfWslXYCbylZV8DWYiX1vJN2Am8o2VfAtmIt9ayS0wE7llJd+Bmch3VvI9mIl8byU/gpnIj4qszKWfGPZalnWK7LZVNDO9Wmiv5nerpovt1/yO1XSxPZvftZoutm/zO1fT9r27iWamNwvt/Pze17R99z9HM9PPrfQLNDP9olDmyeceTRfLPvn8o+liGSifgzRdLAvl85Cmi2WifC7SdLFslM9Hmi6WkfI5SdPFslI+L2nanpm20cz0tpXeQTPTO1Z6F81M71rpPTQzvWel99HM9H6hfJ7P6Jqe5fT556cxMFxpHOG5TpfM61me3KJzVFbC8c1idnJbx/OhUC302f4tnlqzM6M8O2bfLl2wFL9LMq8sv6n2vPbK8gLuMj7zyvKTKT/5DH4VY+ejwswvp7GGbwQhasz8shpC8aI066nzfxaHs3fldOS7Wg81tFeWD1QktVeWP1Fz0F45fgNGfYK89srxPbAsn2mvLC/vfaWg/XIaz3DPp3hSyLxyPFf988/o+zmsWoC09sryodoF2ivHv5y+fyZn/HIaA4h89r2gvXL8K3xfTvHEwj+j//eYrbNdNPPLaWzj+3k2iplfTiPCMg81Zn75cWiN7X+hMVFPxcwvqyF/G3GVhvbLapyqfaW9cvyO+uUumXpl+QsxOFxcbuR/m7zo7DVrjXu15rvm8uNV9bvlDfIj+Yn8QhrkN/IY8sQWnJe8hd2FZOH3hT+Wri39ulRfamZNr15RzA/k3Gfp4T+xLM72</latexit>

Writing recognition methods

What is a recognition method?

❖ we start with input ! , and reduce to subquotients

❖ now we study the subquotient !

❖ a recognition method is a procedure with two tasks:

(1) find new “nice generators” ! for ! together with a
procedure which expresses any ! as SLP in !

(2) record how ! was derived from ! (e.g. via SLPs)

G = ⟨X⟩

K = ⟨XK⟩

YK K
k ∈ K YK

YK XK

Method selection and hints

❖ recog has “database” of recognition methods

❖ methods are ordered by a “rank”

❖ recog tries methods in order of rank, until one succeeds

❖ methods may be retried depending on their return value

❖ methods may pass “hints” to factor and kernel, and also
specify additional recognition method

Methods on a technical level
❖ Input: recognition info record ri and a group G

❖ when run, attempt to resolve the two tasks somehow

❖ if successful:
❖ update ri with new generators ! ; function for producing SLP in
! for any ! ; information how to derive ! from ! (e.g. SLPs)

❖ return Success

❖ else return one of …
❖ NeverApplicable or TemporaryFailure or NotEnoughInformation

YK
YK k ∈ K YK XK

A trivial example
SLPforElementFuncs.TrivialGroup 9= function(ri, g)
 return StraightLineProgramNC([[1,0]], 1);
end;

FindHomMethodsGeneric.TrivialGroup 9= function(ri, G)
 local gens;
 gens 9= GeneratorsOfGroup(G);
 if not ForAll(gens, ri!.isone) then
 return NeverApplicable;
 fi;
 SetSize(ri, 1);
 Setslpforelement(ri, SLPforElementFuncs.TrivialGroup);
 Setslptonice(ri, StraightLineProgramNC([[[1,0]]],
 Length(gens)));
 SetFilterObj(ri, IsLeaf);
 return Success;
end;

AddMethod(FindHomDbPerm,
 FindHomMethodsGeneric.TrivialGroup,
 300, "TrivialGroup",
 "go through generators, compare to identity");

A branching example
❖ Any example that is not a leaf

node involves a nontrivial
epimorphism !

❖ define nice gens of ! as union of
nice gens ! of ! , and
preimages of nice gens ! of !

❖ want SLP in ! for ! :
❖ express ! as SLP in !

❖ evaluate this over ! : yields !

❖ express ! as SLP in !

❖ combined we get SLP for k in !

φ : K → H

K
YN N := ker φ

YH H

YK k ∈ K
φ(k) YH

YK k′� ∈ Nk

kk′�−1 YN

YK

FindHomMethodsPerm.NonTransitive 9=
 function(ri, G)
 local hom, la, o;

 # Then test whether we can do something:
 if IsTransitive(G) then
 return NeverApplicable;
 fi;

 la 9= LargestMovedPoint(G);
 o 9= Orb(G, la, OnPoints);
 Enumerate(o);
 hom 9= OrbActionHomomorphism(G, o);
 SetHomom(ri, hom);
 return Success;
 end;

AddMethod(FindHomDbPerm,
 FindHomMethodsPerm.NonTransitive,
 90, "NonTransitive",
 "try to restrict to orbit");

Passing hints to image and kernel
FindHomMethodsMatrix.BlockLowerTriangular 9= function(ri, G)
 # This is only used coming from a hint, we know what to do:
 # A base change was done to get block lower triangular shape.
 # We first do the diagonal blocks, then the lower p-part:
 local H, data, hom, newgens;
 data 9= rec(blocks 9= ri!.blocks);
 newgens 9= List(GeneratorsOfGroup(G), x]> RECOG.HomOntoBlockDiagonal(data, x));
 Assert(0, not fail in newgens);
 H 9= Group(newgens);
 hom 9= GroupHomByFuncWithData(G, H, RECOG.HomOntoBlockDiagonal, data);
 SetHomom(ri, hom);

 # Give hint to factor
 forfactor(ri).blocks 9= ri!.blocks;
 Add(forfactor(ri).hints, rec(method 9= FindHomMethodsMatrix.BlockDiagonal,
 rank 9= 2000, stamp 9= "BlockDiagonal"));
 # Give hint to kernel N
 findgensNmeth(ri).method 9= FindKernelLowerLeftPGroup;
 findgensNmeth(ri).args 9= [];
 Add(forkernel(ri).hints, rec(method 9= FindHomMethodsMatrix.LowerLeftPGroup,
 rank 9= 2000, stamp 9= “LowerLeftPGroup"));
 forkernel(ri).blocks 9= ri!.blocks;

 return Success;
end;

What is there and what is missing?

What is there?

❖ a flexible framework for tying together different
recognition methods

❖ various recognition methods are already implemented

❖ list in the recog manual
❖ https://gap-packages.github.io/recog/doc/chap6.html

https://gap-packages.github.io/recog/doc/chap6.html

What is missing?
❖ Many old and new methods for recognizing almost

simple groups were never implemented

❖ most constructive recognition methods

❖ Verification is not implemented — very important!

❖ need to add presentations to “leaf” nodes /
recognition methods

❖ then provide infrastructure to lift these through the
recognition tree

❖ Higher-level methods that rewrite or use recognition tree
(see Eamonn’s talk)

❖ Bug fixes

❖ More and better documentation

❖ Tests, tests, tests (import from Magma)

❖ Performance improvements

❖ Infrastructure on the GAP side: faster MeatAxe,
MatrixObj (new matrix interface), …

What else is missing?

Help wanted!
❖ Anybody who is interested in having group recognition

in GAP: please consider contributing to recog

❖ Some ways to help are listed on the summer school
website, see also https://bit.ly/recog-tasks

https://bit.ly/recog-tasks

Developer infrastructure
❖ Homepage

❖ https://gap-packages.github.io/recog/

❖ Source code
❖ https://github.com/gap-packages/recog/

❖ Issue tracker (bug reports, feature requests, support)
❖ https://github.com/gap-packages/recog/issues/

❖ Continuous integration / tests
❖ https://travis-ci.org/gap-packages/recog/

https://github.com/gap-packages/recog
https://github.com/gap-packages/recog

References

❖ Max Neunhöffer, Ákos Seress, A data structure for a
uniform approach to computations with finite groups, 2006

❖ Max Neunhöffer, Constructive Recognition of Finite Groups,
2009, habilitation thesis

❖ Henrik Bäärnhielm, Derek Holt, Charles Leedham-Green,
Eamonn O’Brien, A practical model for computation with
matrix groups, 2014

