1 July 2019

Max Horn

The r e C O g p aCkag e University of Siegen

WARNING!

This talk contains very little math

Some background

What s recog and why does it matter?

* recog is a GAP package

* recog implements {matrix, permutation, black box}-
group recognition

* many computational research problems hinge on having
access to effective group recognition

+ only (?) matrix group recognition implementation
outside of Magma

+ fully operational recog is crucial for GAP and beyond

What happened so far ...

* recog authors: Akos Seress and Max Neunhoffer

2013 was a bad year: Akos died; Max left academia

* since then, no major work was done on recog

* (some minor work by me: bug fixes, documentation, ...)
+ lots is missing in recog — but we need it!

* who is going to do the work?

OU!

... and your students, friends, ... — spread the word!

How does 1t work?

How does recognition work, roughly?

« Input: set X of generators (permutations, matrices, ...)

* Qutput:
+ order of G := (X), name of G
+ new generating set Y,

procedure to express any g € G as word (SLP)in ¥

« Iterate over a catalog of methods to analyze G; each either

» “reduces” to smaller cases by an epimorphism ¢ : G — H, or

+ handles group directly if “easy” or almost simple

T'he recognition tree

blue = kernels, white = images

leaves are either easy to handle or almost simple

Writing recognition methods

What is a recognition method?

« we start with input G = (X), and reduce to subquotients
+ now we study the subquotient K = (X)
* a recognition method is a procedure with two tasks:

(1) find new “nice generators” Y for K together with a
procedure which expresses any k € K as SLP in Y

(2) record how Yy was derived from X (e.g. via SLPs)

Method selection and hints

* recog has “database” of recognition methods

* methods are ordered by a “rank”

* recog tries methods in order of rank, until one succeeds
* methods may be retried depending on their return value

* methods may pass “hints” to factor and kernel, and also
specify additional recognition method

Methods on a technical level

Input: recognition info record ri and a group G
* when run, attempt to resolve the two tasks somehow

+ 1f successful:

« update ri with new generators Yy; function for producing SLP in
Y for any k € K ; information how to derive Yy from X (e.g. SLPs)

* return Success

<

+ else return one of ...

NeverApplicable or TemporaryFailure Oor NotEnoughInformation

A trivial example

SLPforElementFuncs.TrivialGroup := function(ri, g)
return StraightLineProgramNC([[1,0]], 1);
end;

FindHomMethodsGeneric.TrivialGroup := function(ri, G)
local gens;
gens := Generators0fGroup(G);
if not ForAll(gens, ri!.isone) then
return NeverApplicable;
il
SetSize(ri, 1);

Setslpforelement(ri, SLPforElementFuncs.TrivialGroup);
Setslptonice(ri, StraightLineProgramNC([[[1,0]]]1,
Length(gens)));

SetFilterObj(ri, IsLeaf);
return Success;
end;

AddMethod (FindHomDbPerm,
FindHomMethodsGeneric.TrivialGroup,
300, "TrivialGroup”,
"ao through generators, compare to identity");

A branching example

< Any example that is not a leaf FindHomMethodsPerm.NonTransitive :=
/ o function(ri, G)
node involves a nontrivial local hom, la, o;
eplmorphlsm QP . K > H } Then test whether we can do something:
if IsTransitive(G) then
+ define nice gens of K as union of et
i:

nice gens Yy of N := ker ¢, and
la := LargestMovedPoint(G);

preimages of nice gens Y of H o := 0rb(G, la, OnPoints):
Enumerate(o);
- . : hom := OrbActionHomomorphism(G, o);
want SLP in Y for k € K: e

return Success;

- express @(k) as SLP in Yy

end;
0’ = ° > ,
evaluate thlS over YK y1€1ds k = Nk AddMethod(FindHomePerm,
= - FindHomMethodsPerm.NonTransitive,
* eXpPress kk~" as SLPin Y, N 99, "NonTransitive",

"try to restrict to orbit");

» combined we get SLP for kin Yy

Passing hints to image and kernel

FindHomMethodsMatrix.BlockLowerTriangular := function(ri, G)
} This is only used coming from a hint, we know what to do:
k A base change was done to get block lower triangular shape.
k We first do the diagonal blocks, then the lower p-part:
local H, data, hom, newgens;
data := rec(blocks := ri!.blocks);
newgens := List(GeneratorsOfGroup(G), x — RECOG.HomOntoBlockDiagonal(data, x));
Assert(@, not fail in newgens);
H := Group(newgens);
hom := GroupHomByFuncWithData(G, H, RECOG.HomOntoBlockDiagonal, data);
SetHomom(ri, hom);

f Give hint to factor

forfactor(ri).blocks := ri!.blocks;

Add(forfactor(ri).hints, rec(method := FindHomMethodsMatrix.BlockDiagonal,
rank := 2000, stamp := "BlockDiagonal”));

} Give hint to kernel N

findgensNmeth(ri) .method := FindKernelLowerLeftPGroup;

findgensNmeth(ri).args := [];

Add(forkernel(ri).hints, rec(method := FindHomMethodsMatrix.LowerLeftPGroup,
rank := 2000, stamp := “LowerLeftPGroup"));

forkernel(ri).blocks := ri!.blocks;

return Success;
end;

What is there and what is missing?

What is there?

* a flexible framework for tying together different
recognition methods

* various recognition methods are already implemented

+ list in the recog manual

+ https://gap-packages.github.io/recog/doc/chap6.html

https://gap-packages.github.io/recog/doc/chap6.html

What 1s missing?

* Many old and new methods for recognizing almost
simple groups were never implemented

* most constructive recognition methods
“ Verification is not implemented — very important!

+ need to add presentations to “leaf” nodes /
recognition methods

* then provide infrastructure to lift these through the
recognition tree

What else 1s missing?

+ Higher-level methods that rewrite or use recognition tree
(see Eamonn’s talk)

+ Bug fixes

+ More and better documentation

+ Tests, tests, tests (import from Magma)

“ Performance improvements

+ Infrastructure on the GAP side: faster MeatAxe,

MatrixObj (new matrix interface), ...

Help wanted!

* Anybody who is interested in having group recognition
in GAP: please consider contributing to recog

* Some ways to help are listed on the summer school

website, see also https://bit.ly/recog-tasks

https://bit.ly/recog-tasks

Developer infrastructure

* Homepage

» https://gap-packages.github.io/recog/

+ Source code

+ https: / / github. Com/ gap-packages / 1‘9C08/
« Issue tracker (bug reports, feature requests, support)
« https://github.com/gap-packages/recog/issues/

* Continuous integration / tests

» https://travis-ci.org/gap-packages/recog/

https://github.com/gap-packages/recog
https://github.com/gap-packages/recog

References

» Max Neunhoffer, Akos Seress, A data structure for a
uniform approach to computations with finite groups, 2006

* Max Neunhoffer, Constructive Recognition of Finite Groups,
2009, habilitation thesis

+ Henrik Baarnhielm, Derek Holt, Charles Leedham-Green,

Eamonn O’Brien, A practical model for computation with
matrix groups, 2014

